Spaces:
Runtime error
Runtime error
Commit
·
7d18df7
1
Parent(s):
e61b31a
Add UI-TARS grounding model implementation
Browse files- README.md +14 -0
- app.py +56 -0
- requirements.txt +4 -0
README.md
CHANGED
|
@@ -11,4 +11,18 @@ license: mit
|
|
| 11 |
short_description: A grounding model for CUA
|
| 12 |
---
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 11 |
short_description: A grounding model for CUA
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# UI-TARS Grounding Model
|
| 15 |
+
|
| 16 |
+
A grounding model for Computer Use Agents (CUA) that can understand screen elements and generate action plans.
|
| 17 |
+
|
| 18 |
+
## Usage
|
| 19 |
+
|
| 20 |
+
1. Upload a screenshot of your desktop/browser
|
| 21 |
+
2. Describe what you want to do
|
| 22 |
+
3. Get grounding results with element locations and action plans
|
| 23 |
+
|
| 24 |
+
## Model
|
| 25 |
+
|
| 26 |
+
This space hosts the UI-TARS-1.5-7B model for visual grounding tasks.
|
| 27 |
+
|
| 28 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
import torch
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import io
|
| 6 |
+
import base64
|
| 7 |
+
import json
|
| 8 |
+
|
| 9 |
+
# Load the UI-TARS model (this will download ~7GB on first run)
|
| 10 |
+
model_name = "ByteDance-Seed/UI-TARS-1.5-7B"
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 12 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 13 |
+
|
| 14 |
+
def process_grounding(image, prompt):
|
| 15 |
+
"""
|
| 16 |
+
Process image with UI-TARS grounding model
|
| 17 |
+
This is a simplified implementation - you'll need to adapt it
|
| 18 |
+
"""
|
| 19 |
+
try:
|
| 20 |
+
# Convert image to PIL if needed
|
| 21 |
+
if isinstance(image, str):
|
| 22 |
+
# Handle base64 string
|
| 23 |
+
image_data = base64.b64decode(image)
|
| 24 |
+
image = Image.open(io.BytesIO(image_data))
|
| 25 |
+
|
| 26 |
+
# Here you would implement the actual UI-TARS grounding logic
|
| 27 |
+
# For now, returning a mock response
|
| 28 |
+
result = {
|
| 29 |
+
"elements": [
|
| 30 |
+
{"type": "button", "x": 100, "y": 200, "text": "Click me"},
|
| 31 |
+
{"type": "text_field", "x": 150, "y": 300, "text": "Input field"}
|
| 32 |
+
],
|
| 33 |
+
"actions": [
|
| 34 |
+
{"action": "click", "x": 100, "y": 200, "description": "Click button"},
|
| 35 |
+
{"action": "type", "x": 150, "y": 300, "description": "Type in field"}
|
| 36 |
+
]
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
return json.dumps(result, indent=2)
|
| 40 |
+
|
| 41 |
+
except Exception as e:
|
| 42 |
+
return f"Error processing image: {str(e)}"
|
| 43 |
+
|
| 44 |
+
# Create Gradio interface
|
| 45 |
+
iface = gr.Interface(
|
| 46 |
+
fn=process_grounding,
|
| 47 |
+
inputs=[
|
| 48 |
+
gr.Image(type="pil", label="Upload Screenshot"),
|
| 49 |
+
gr.Textbox(label="Prompt/Goal", placeholder="What do you want to do?")
|
| 50 |
+
],
|
| 51 |
+
outputs=gr.Textbox(label="Grounding Results", lines=10),
|
| 52 |
+
title="UI-TARS Grounding Model",
|
| 53 |
+
description="Upload a screenshot and describe your goal to get grounding results"
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
torch
|
| 3 |
+
Pillow
|
| 4 |
+
gradio
|