Spaces:
Paused
Paused
| from diffusers import ( | |
| ControlNetModel, | |
| StableDiffusionControlNetPipeline, | |
| UniPCMultistepScheduler, | |
| ) | |
| import torch | |
| import PIL | |
| import PIL.Image | |
| from diffusers.loaders import UNet2DConditionLoadersMixin | |
| from typing import Dict | |
| from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor | |
| import functools | |
| from cross_frame_attention import CrossFrameAttnProcessor | |
| TEXT_ENCODER_NAME = "text_encoder" | |
| UNET_NAME = "unet" | |
| NEGATIVE_PROMPT = "blurry, text, caption, lowquality, lowresolution, low res, grainy, ugly" | |
| def attach_loaders_mixin(model): | |
| # hacky way to make ControlNet work with LoRA. This may not be required in future versions of diffusers. | |
| model.text_encoder_name = TEXT_ENCODER_NAME | |
| model.unet_name = UNET_NAME | |
| r""" | |
| Attach the [`UNet2DConditionLoadersMixin`] to a model. This will add the | |
| all the methods from the mixin 'UNet2DConditionLoadersMixin' to the model. | |
| """ | |
| # mixin_instance = UNet2DConditionLoadersMixin() | |
| for attr_name, attr_value in vars(UNet2DConditionLoadersMixin).items(): | |
| # print(attr_name) | |
| if callable(attr_value): | |
| # setattr(model, attr_name, functools.partialmethod(attr_value, model).__get__(model, model.__class__)) | |
| setattr(model, attr_name, functools.partial(attr_value, model)) | |
| return model | |
| def set_attn_processor(module, processor, _remove_lora=False): | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor, _remove_lora=_remove_lora) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in module.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| class ControlNetX(ControlNetModel, UNet2DConditionLoadersMixin): | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors | |
| # This may not be required in future versions of diffusers. | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
| if hasattr(module, "get_processor"): | |
| processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| class ControlNetPipeline: | |
| def __init__(self, checkpoint="lllyasviel/control_v11f1p_sd15_depth", sd_checkpoint="runwayml/stable-diffusion-v1-5") -> None: | |
| controlnet = ControlNetX.from_pretrained(checkpoint) | |
| self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| sd_checkpoint, controlnet=controlnet, requires_safety_checker=False, safety_checker=None, | |
| torch_dtype=torch.float16) | |
| self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
| def __call__(self, | |
| prompt: str="", | |
| height=512, | |
| width=512, | |
| control_image=None, | |
| controlnet_conditioning_scale=1.0, | |
| num_inference_steps: int=20, | |
| **kwargs) -> PIL.Image.Image: | |
| out = self.pipe(prompt, control_image, | |
| height=height, width=width, | |
| num_inference_steps=num_inference_steps, | |
| controlnet_conditioning_scale=controlnet_conditioning_scale, | |
| **kwargs).images | |
| return out[0] if len(out) == 1 else out | |
| def to(self, *args, **kwargs): | |
| self.pipe.to(*args, **kwargs) | |
| return self | |
| class LooseControlNet(ControlNetPipeline): | |
| def __init__(self, loose_control_weights="shariqfarooq/loose-control-3dbox", cn_checkpoint="lllyasviel/control_v11f1p_sd15_depth", sd_checkpoint="runwayml/stable-diffusion-v1-5") -> None: | |
| super().__init__(cn_checkpoint, sd_checkpoint) | |
| self.pipe.controlnet = attach_loaders_mixin(self.pipe.controlnet) | |
| self.pipe.controlnet.load_attn_procs(loose_control_weights) | |
| def set_normal_attention(self): | |
| self.pipe.unet.set_attn_processor(AttnProcessor()) | |
| def set_cf_attention(self, _remove_lora=False): | |
| for upblocks in self.pipe.unet.up_blocks[-2:]: | |
| set_attn_processor(upblocks, CrossFrameAttnProcessor(), _remove_lora=_remove_lora) | |
| def edit(self, depth, depth_edit, prompt, prompt_edit=None, seed=42, seed_edit=None, negative_prompt=NEGATIVE_PROMPT, controlnet_conditioning_scale=1.0, num_inference_steps=20, **kwargs): | |
| if prompt_edit is None: | |
| prompt_edit = prompt | |
| if seed_edit is None: | |
| seed_edit = seed | |
| seed = int(seed) | |
| seed_edit = int(seed_edit) | |
| control_image = [depth, depth_edit] | |
| prompt = [prompt, prompt_edit] | |
| generator = [torch.Generator().manual_seed(seed), torch.Generator().manual_seed(seed_edit)] | |
| gen = self.pipe(prompt, control_image=control_image, controlnet_conditioning_scale=controlnet_conditioning_scale, generator=generator, num_inference_steps=num_inference_steps, negative_prompt=negative_prompt, **kwargs)[-1] | |
| return gen |