Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,5 @@
|
|
| 1 |
import os
|
| 2 |
from llama_cpp import Llama
|
| 3 |
-
# from sentence_transformers import SentenceTransformer # Keep commented for now due to RAM/complexity
|
| 4 |
-
# import chromadb
|
| 5 |
-
# from chromadb.utils import embedding_functions
|
| 6 |
from fastapi import FastAPI, Query
|
| 7 |
import gradio as gr
|
| 8 |
|
|
@@ -15,76 +12,48 @@ SYSTEM_MESSAGE = """You are Bella, an expert AI assistant dedicated to supportin
|
|
| 15 |
# === Load LLM ===
|
| 16 |
llm = None # Initialize llm to None
|
| 17 |
try:
|
| 18 |
-
# MiniCPM-V models are generally used with `create_chat_completion`
|
| 19 |
-
# Llama.from_pretrained automatically handles downloading the GGUF from HF Hub
|
| 20 |
print("Loading MiniCPM-V-2_6-gguf model...")
|
| 21 |
llm = Llama.from_pretrained(
|
| 22 |
repo_id="openbmb/MiniCPM-V-2_6-gguf",
|
| 23 |
filename="ggml-model-Q4_K_M.gguf",
|
| 24 |
n_ctx=4096,
|
| 25 |
n_threads=os.cpu_count(),
|
| 26 |
-
n_batch=512,
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
# MiniCPM-V-2_6-gguf uses a specific chat template.
|
| 30 |
-
# Check the model card or a GGUF viewer for its precise chat template.
|
| 31 |
-
# This one is a common pattern for MiniCPM:
|
| 32 |
-
chat_format="chatml" # Or "llama-2" if that's what it uses, but chatml is more common
|
| 33 |
-
# For MiniCPM specifically, it's <|im_start|>role\ncontent<|im_end|>
|
| 34 |
-
# which is a variant of ChatML. Llama.cpp handles it if metadata exists.
|
| 35 |
)
|
| 36 |
print("MiniCPM-V-2_6-gguf model loaded successfully.")
|
| 37 |
except Exception as e:
|
| 38 |
print(f"Error loading MiniCPM-V-2_6-gguf model: {e}")
|
| 39 |
-
# Consider
|
| 40 |
-
#
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
| 45 |
-
client = chromadb.PersistentClient(path="chroma_db")
|
| 46 |
-
col = client.get_or_create_collection(
|
| 47 |
-
"docs",
|
| 48 |
-
embedding_function=embedding_functions.SentenceTransformerEmbeddingFunction(
|
| 49 |
-
model_name="all-MiniLM-L6-v2"
|
| 50 |
-
)
|
| 51 |
-
)
|
| 52 |
-
seed_texts = [
|
| 53 |
-
"MiniCPM‑V‑2_6‑gguf runs well on CPU via llama.cpp.",
|
| 54 |
-
"This model supports RAG with Chromadb and FastAPI + Gradio UI."
|
| 55 |
-
]
|
| 56 |
-
for t in seed_texts:
|
| 57 |
-
col.add(documents=[t], ids=[str(hash(t))])
|
| 58 |
-
"""
|
| 59 |
-
|
| 60 |
-
# === Query Function (Modified to use chat_completion) ===
|
| 61 |
def llm_query(messages_history: list, max_tokens: int) -> str:
|
| 62 |
if llm is None:
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
# context = "" # If RAG were active, you'd insert context here
|
| 66 |
-
# prompt = f"Context:\n{context}\n\nUser: {q}\nAssistant:" # Not needed with chat_completion
|
| 67 |
|
| 68 |
try:
|
| 69 |
-
|
|
|
|
| 70 |
response_generator = llm.create_chat_completion(
|
| 71 |
-
messages=messages_history,
|
| 72 |
stream=True,
|
| 73 |
max_tokens=max_tokens,
|
| 74 |
temperature=0.7,
|
| 75 |
top_p=0.9,
|
| 76 |
-
|
| 77 |
-
#
|
| 78 |
-
|
| 79 |
-
stop=["<|im_end|>"]
|
| 80 |
)
|
| 81 |
|
| 82 |
full_response = ""
|
| 83 |
for chunk in response_generator:
|
| 84 |
-
# 'delta' contains the new token
|
| 85 |
token = chunk["choices"][0]["delta"].get("content", "")
|
| 86 |
full_response += token
|
| 87 |
-
yield full_response
|
| 88 |
|
| 89 |
except Exception as e:
|
| 90 |
print(f"Error during LLM inference: {e}")
|
|
@@ -92,29 +61,23 @@ def llm_query(messages_history: list, max_tokens: int) -> str:
|
|
| 92 |
|
| 93 |
|
| 94 |
# === FastAPI App ===
|
| 95 |
-
# Keep FastAPI part if you intend to expose an API endpoint.
|
| 96 |
-
# Note: For Gradio-only Spaces, you don't strictly need FastAPI, but it's fine to keep.
|
| 97 |
app = FastAPI()
|
| 98 |
|
| 99 |
@app.get("/ask")
|
| 100 |
def ask_api(q: str = Query(...), tokens: int = Query(TOKEN_LIMIT)):
|
| 101 |
-
# This FastAPI endpoint will now use the chat history format internally,
|
| 102 |
-
# but for a single query it's just the system message and user message.
|
| 103 |
messages_for_api = [
|
| 104 |
{"role": "system", "content": SYSTEM_MESSAGE},
|
| 105 |
{"role": "user", "content": q}
|
| 106 |
]
|
| 107 |
-
# For a non-streaming API, you'd run it to completion and return the final text
|
| 108 |
-
# Note: llm_query is a generator now, so you'd need to consume it for an API.
|
| 109 |
-
# For simplicity, if this API is purely for the Gradio frontend, it might not be necessary.
|
| 110 |
-
# If it is for external use and non-streaming, you'd adapt llm_query or call llm.create_chat_completion directly here.
|
| 111 |
try:
|
| 112 |
response = llm.create_chat_completion(
|
| 113 |
messages=messages_for_api,
|
| 114 |
max_tokens=tokens,
|
| 115 |
temperature=0.7,
|
| 116 |
top_p=0.9,
|
| 117 |
-
|
|
|
|
|
|
|
| 118 |
)
|
| 119 |
return {"answer": response["choices"][0]["message"]["content"]}
|
| 120 |
except Exception as e:
|
|
@@ -127,37 +90,20 @@ def ask_post_api(body: dict):
|
|
| 127 |
|
| 128 |
# === Gradio UI ===
|
| 129 |
def chat_fn(message, history, max_tokens):
|
| 130 |
-
# Gradio `history` for gr.Chatbot(type="messages") is already in OpenAI format:
|
| 131 |
-
# list of dictionaries like [{"role": "user", "content": "hello"}, {"role": "assistant", "content": "hi"}]
|
| 132 |
-
|
| 133 |
-
# 1. Add user message to history immediately for display
|
| 134 |
-
# This creates a new history list with the user's message, for immediate display
|
| 135 |
new_history = history + [{"role": "user", "content": message}]
|
| 136 |
-
yield new_history, gr.update(value="")
|
| 137 |
|
| 138 |
-
# 2. Prepare full message list for LLM, including the system message
|
| 139 |
messages_for_llm = [{"role": "system", "content": SYSTEM_MESSAGE}] + new_history
|
| 140 |
|
| 141 |
-
# 3. Call LLM for response (streaming)
|
| 142 |
full_bot_response = ""
|
| 143 |
for chunk in llm_query(messages_for_llm, max_tokens):
|
| 144 |
-
full_bot_response = chunk
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
if len(new_history) > 0 and new_history[-1]["role"] == "user":
|
| 149 |
-
if len(new_history) == len(history) + 1: # First chunk after user message
|
| 150 |
-
new_history.append({"role": "assistant", "content": full_bot_response})
|
| 151 |
-
else: # Subsequent chunks for the same assistant message
|
| 152 |
-
new_history[-1]["content"] = full_bot_response
|
| 153 |
-
else: # Fallback if history state is unexpected (shouldn't happen with Chatbot type="messages")
|
| 154 |
new_history.append({"role": "assistant", "content": full_bot_response})
|
| 155 |
|
| 156 |
-
yield new_history, gr.update(value="")
|
| 157 |
-
|
| 158 |
-
# After generation is complete, ensure the final history state is sent
|
| 159 |
-
# (though the last yield in the loop should cover this)
|
| 160 |
-
# yield new_history, gr.update(value="") # This might be redundant but harmless
|
| 161 |
|
| 162 |
|
| 163 |
with gr.Blocks() as demo:
|
|
@@ -169,44 +115,35 @@ with gr.Blocks() as demo:
|
|
| 169 |
"""
|
| 170 |
)
|
| 171 |
|
| 172 |
-
# Use type="messages" for OpenAI-like chat history format
|
| 173 |
chatbot = gr.Chatbot(
|
| 174 |
height=500,
|
| 175 |
label="Bella's Responses",
|
| 176 |
-
type="messages",
|
| 177 |
autoscroll=True,
|
| 178 |
resizable=True,
|
| 179 |
show_copy_button=True
|
| 180 |
)
|
| 181 |
|
| 182 |
-
# Simplified input section
|
| 183 |
msg = gr.Textbox(placeholder="Ask Bella a question...", show_label=False, submit_btn="Ask")
|
| 184 |
|
| 185 |
token_slider = gr.Slider(64, 1024, value=256, step=16, label="Max tokens")
|
| 186 |
|
| 187 |
-
# Clear button
|
| 188 |
clear_btn = gr.ClearButton([msg, chatbot])
|
| 189 |
|
| 190 |
-
# Gradio submit event for streaming.
|
| 191 |
-
# The `outputs` here are: chatbot (for history updates) and msg (to clear it).
|
| 192 |
msg.submit(
|
| 193 |
fn=chat_fn,
|
| 194 |
inputs=[msg, chatbot, token_slider],
|
| 195 |
-
outputs=[chatbot, msg],
|
| 196 |
-
queue=True
|
| 197 |
)
|
| 198 |
|
| 199 |
-
# When using FastAPI, Gradio is launched via FastAPI's startup event.
|
| 200 |
@app.on_event("startup")
|
| 201 |
-
async def startup_event():
|
| 202 |
print("Starting Gradio app within FastAPI startup event...")
|
| 203 |
-
# This will launch Gradio within the Uvicorn server started by FastAPI
|
| 204 |
-
# The `share=True` is not needed in Hugging Face Spaces; it's handled automatically.
|
| 205 |
demo.queue().launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))
|
| 206 |
print("Gradio app launch initiated.")
|
| 207 |
|
| 208 |
if __name__ == "__main__":
|
| 209 |
import uvicorn
|
| 210 |
-
# This block is for local testing. On Hugging Face Spaces, `app` is run by Gunicorn/Uvicorn.
|
| 211 |
print("Running FastAPI app locally (if not in Hugging Face Space)...")
|
| 212 |
uvicorn.run(app, host="0.0.0.0", port=int(os.getenv("PORT", 7860)))
|
|
|
|
| 1 |
import os
|
| 2 |
from llama_cpp import Llama
|
|
|
|
|
|
|
|
|
|
| 3 |
from fastapi import FastAPI, Query
|
| 4 |
import gradio as gr
|
| 5 |
|
|
|
|
| 12 |
# === Load LLM ===
|
| 13 |
llm = None # Initialize llm to None
|
| 14 |
try:
|
|
|
|
|
|
|
| 15 |
print("Loading MiniCPM-V-2_6-gguf model...")
|
| 16 |
llm = Llama.from_pretrained(
|
| 17 |
repo_id="openbmb/MiniCPM-V-2_6-gguf",
|
| 18 |
filename="ggml-model-Q4_K_M.gguf",
|
| 19 |
n_ctx=4096,
|
| 20 |
n_threads=os.cpu_count(),
|
| 21 |
+
n_batch=512, # Increased batch size for prompt processing
|
| 22 |
+
n_gpu_layers=0, # Ensure this is 0 for CPU-only inference on free tier
|
| 23 |
+
verbose=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
)
|
| 25 |
print("MiniCPM-V-2_6-gguf model loaded successfully.")
|
| 26 |
except Exception as e:
|
| 27 |
print(f"Error loading MiniCPM-V-2_6-gguf model: {e}")
|
| 28 |
+
# Consider more robust error handling for production
|
| 29 |
+
# e.g., setting a flag and displaying an error message in the UI
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# === Query Function (Modified for better repetition control) ===
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
def llm_query(messages_history: list, max_tokens: int) -> str:
|
| 34 |
if llm is None:
|
| 35 |
+
yield "Error: LLM model not loaded. Cannot generate response."
|
| 36 |
+
return
|
|
|
|
|
|
|
| 37 |
|
| 38 |
try:
|
| 39 |
+
common_stop_tokens = ["<|im_end|>", "</s>", "<|end_of_text|>"]
|
| 40 |
+
|
| 41 |
response_generator = llm.create_chat_completion(
|
| 42 |
+
messages=messages_history,
|
| 43 |
stream=True,
|
| 44 |
max_tokens=max_tokens,
|
| 45 |
temperature=0.7,
|
| 46 |
top_p=0.9,
|
| 47 |
+
repeat_penalty=1.1,
|
| 48 |
+
#repeat_last_n=256, # <--- NEW/MODIFIED: Increase the window for repetition penalty
|
| 49 |
+
stop=common_stop_tokens
|
|
|
|
| 50 |
)
|
| 51 |
|
| 52 |
full_response = ""
|
| 53 |
for chunk in response_generator:
|
|
|
|
| 54 |
token = chunk["choices"][0]["delta"].get("content", "")
|
| 55 |
full_response += token
|
| 56 |
+
yield full_response
|
| 57 |
|
| 58 |
except Exception as e:
|
| 59 |
print(f"Error during LLM inference: {e}")
|
|
|
|
| 61 |
|
| 62 |
|
| 63 |
# === FastAPI App ===
|
|
|
|
|
|
|
| 64 |
app = FastAPI()
|
| 65 |
|
| 66 |
@app.get("/ask")
|
| 67 |
def ask_api(q: str = Query(...), tokens: int = Query(TOKEN_LIMIT)):
|
|
|
|
|
|
|
| 68 |
messages_for_api = [
|
| 69 |
{"role": "system", "content": SYSTEM_MESSAGE},
|
| 70 |
{"role": "user", "content": q}
|
| 71 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
try:
|
| 73 |
response = llm.create_chat_completion(
|
| 74 |
messages=messages_for_api,
|
| 75 |
max_tokens=tokens,
|
| 76 |
temperature=0.7,
|
| 77 |
top_p=0.9,
|
| 78 |
+
repeat_penalty=1.1,
|
| 79 |
+
repeat_last_n=256, # <--- NEW/MODIFIED: Apply here as well
|
| 80 |
+
stop=["<|im_end|>", "</s>", "<|end_of_text|>"]
|
| 81 |
)
|
| 82 |
return {"answer": response["choices"][0]["message"]["content"]}
|
| 83 |
except Exception as e:
|
|
|
|
| 90 |
|
| 91 |
# === Gradio UI ===
|
| 92 |
def chat_fn(message, history, max_tokens):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
new_history = history + [{"role": "user", "content": message}]
|
| 94 |
+
yield new_history, gr.update(value="")
|
| 95 |
|
|
|
|
| 96 |
messages_for_llm = [{"role": "system", "content": SYSTEM_MESSAGE}] + new_history
|
| 97 |
|
|
|
|
| 98 |
full_bot_response = ""
|
| 99 |
for chunk in llm_query(messages_for_llm, max_tokens):
|
| 100 |
+
full_bot_response = chunk
|
| 101 |
+
if len(new_history) > 0 and new_history[-1]["role"] == "assistant":
|
| 102 |
+
new_history[-1]["content"] = full_bot_response
|
| 103 |
+
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
new_history.append({"role": "assistant", "content": full_bot_response})
|
| 105 |
|
| 106 |
+
yield new_history, gr.update(value="")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
|
| 109 |
with gr.Blocks() as demo:
|
|
|
|
| 115 |
"""
|
| 116 |
)
|
| 117 |
|
|
|
|
| 118 |
chatbot = gr.Chatbot(
|
| 119 |
height=500,
|
| 120 |
label="Bella's Responses",
|
| 121 |
+
type="messages",
|
| 122 |
autoscroll=True,
|
| 123 |
resizable=True,
|
| 124 |
show_copy_button=True
|
| 125 |
)
|
| 126 |
|
|
|
|
| 127 |
msg = gr.Textbox(placeholder="Ask Bella a question...", show_label=False, submit_btn="Ask")
|
| 128 |
|
| 129 |
token_slider = gr.Slider(64, 1024, value=256, step=16, label="Max tokens")
|
| 130 |
|
|
|
|
| 131 |
clear_btn = gr.ClearButton([msg, chatbot])
|
| 132 |
|
|
|
|
|
|
|
| 133 |
msg.submit(
|
| 134 |
fn=chat_fn,
|
| 135 |
inputs=[msg, chatbot, token_slider],
|
| 136 |
+
outputs=[chatbot, msg],
|
| 137 |
+
queue=True
|
| 138 |
)
|
| 139 |
|
|
|
|
| 140 |
@app.on_event("startup")
|
| 141 |
+
async def startup_event():
|
| 142 |
print("Starting Gradio app within FastAPI startup event...")
|
|
|
|
|
|
|
| 143 |
demo.queue().launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))
|
| 144 |
print("Gradio app launch initiated.")
|
| 145 |
|
| 146 |
if __name__ == "__main__":
|
| 147 |
import uvicorn
|
|
|
|
| 148 |
print("Running FastAPI app locally (if not in Hugging Face Space)...")
|
| 149 |
uvicorn.run(app, host="0.0.0.0", port=int(os.getenv("PORT", 7860)))
|