Spaces:
Runtime error
Runtime error
| # -*- coding: utf-8 -*- | |
| """Test_gradio_push.ipynb | |
| Automatically generated by Colaboratory. | |
| Original file is located at | |
| https://colab.research.google.com/drive/1mlZpAq-EWRmmLHH4Ok533awreqtJwzzW | |
| """ | |
| """# HF Script | |
| """ | |
| # -*- coding: utf-8 -*- | |
| """Copy of Anime_Pack_Gradio.ipynb | |
| Automatically generated by Colaboratory. | |
| Original file is located at | |
| https://colab.research.google.com/drive/1RxVCwOkq3Q5qlEkQxhFGeUxICBujjEjR | |
| """ | |
| import os | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
| tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-zh-en") | |
| model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-zh-en") | |
| import gradio as gr | |
| import numpy as np | |
| from PIL import Image | |
| from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, DPMSolverMultistepScheduler, StableDiffusionImg2ImgPipeline | |
| import torch | |
| from controlnet_aux import HEDdetector | |
| from diffusers.utils import load_image | |
| import concurrent.futures | |
| from threading import Thread | |
| from compel import Compel | |
| from transformers import pipeline | |
| model_ckpt = "papluca/xlm-roberta-base-language-detection" | |
| pipe = pipeline("text-classification", model=model_ckpt) | |
| HF_TOKEN = os.environ.get("HUGGING_FACE_HUB_TOKEN") | |
| device="cuda" if torch.cuda.is_available() else "cpu" | |
| pipe_scribble, pipe_depth, pipe_img2img = None, None, None | |
| hidden_booster_text = "masterpiece++, best quality++, ultra-detailed+ +, unity 8k wallpaper+, illustration+, anime style+, intricate, fluid simulation, sharp edges. glossy++, Smooth++, detailed eyes++, best quality++,4k++,8k++,highres++,masterpiece++,ultra- detailed,realistic++,photorealistic++,photo-realistic++,depth of field, ultra-high definition, highly detailed, natural lighting, sharp focus, cinematic, hyperrealism,extremely detailed" | |
| hidden_negative = "bad anatomy, disfigured, poorly drawn,deformed, mutation, malformation, deformed, mutated, disfigured, deformed eyes+, bad face++, bad hands, poorly drawn hands, malformed hands, extra arms++, extra legs++, Fused body+, Fused hands+, Fused legs+, missing arms, missing limb, extra digit+, fewer digits, floating limbs, disconnected limbs, inaccurate limb, bad fingers, missing fingers, ugly face, long body++" | |
| hidden_cn_booster_text = ",漂亮的脸" | |
| hidden_cn_negative = "" | |
| hed = HEDdetector.from_pretrained('lllyasviel/ControlNet') | |
| controlnet_scribble = ControlNetModel.from_pretrained( | |
| "lllyasviel/sd-controlnet-scribble", torch_dtype=torch.float16, safety_checker=None, requires_safety_checker=False, ) | |
| depth_estimator = pipeline('depth-estimation') | |
| controlnet_depth = ControlNetModel.from_pretrained( | |
| "lllyasviel/sd-controlnet-depth", torch_dtype=torch.float16 | |
| ) | |
| def translate(prompt): | |
| trans_text = prompt | |
| translated = model.generate(**tokenizer(trans_text, return_tensors="pt", padding=True)) | |
| tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated] | |
| tgt_text = ''.join(tgt_text)[:-1] | |
| return tgt_text | |
| def load_pipe_scribble(): | |
| global pipe_scribble | |
| if pipe_scribble is None: | |
| pipe_scribble = StableDiffusionControlNetPipeline.from_single_file( | |
| "https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors", controlnet=controlnet_scribble, safety_checker=None, requires_safety_checker=False, | |
| torch_dtype=torch.float16, token=HF_TOKEN | |
| ) | |
| pipe_scribble.load_lora_weights("shellypeng/lora2") | |
| pipe_scribble.fuse_lora(lora_scale=0.1) | |
| pipe_scribble.load_textual_inversion("shellypeng/textinv1") | |
| pipe_scribble.load_textual_inversion("shellypeng/textinv2") | |
| pipe_scribble.load_textual_inversion("shellypeng/textinv3") | |
| pipe_scribble.load_textual_inversion("shellypeng/textinv4") | |
| pipe_scribble.scheduler = DPMSolverMultistepScheduler.from_config(pipe_scribble.scheduler.config, use_karras_sigmas=True) | |
| pipe_scribble.safety_checker = None | |
| pipe_scribble.requires_safety_checker = False | |
| pipe_scribble.to(device) | |
| pipe_scribble.safety_checker = lambda images, **kwargs: (images, [False] * len(images)) | |
| def load_pipe_depth(): | |
| global pipe_depth | |
| if pipe_depth is None: | |
| pipe_depth = StableDiffusionControlNetPipeline.from_single_file( | |
| "https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors", controlnet=controlnet_depth, | |
| torch_dtype=torch.float16, | |
| ) | |
| pipe_depth.load_lora_weights("shellypeng/lora1") | |
| pipe_depth.fuse_lora(lora_scale=0.3) | |
| pipe_depth.load_textual_inversion("shellypeng/textinv1") | |
| pipe_depth.load_textual_inversion("shellypeng/textinv2") | |
| pipe_depth.load_textual_inversion("shellypeng/textinv3") | |
| pipe_depth.load_textual_inversion("shellypeng/textinv4") | |
| pipe_depth.scheduler = DPMSolverMultistepScheduler.from_config(pipe_depth.scheduler.config, use_karras_sigmas=True) | |
| def dummy(images, **kwargs): | |
| return images, False | |
| pipe_depth.safety_checker = lambda images, **kwargs: (images, [False] * len(images)) | |
| pipe_depth.to(device) | |
| def load_pipe_img2img(): | |
| global pipe_img2img | |
| if pipe_img2img is None: | |
| pipe_img2img = StableDiffusionImg2ImgPipeline.from_single_file("https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors", | |
| torch_dtype=torch.float16, safety_checker=None, requires_safety_checker=False, token=HF_TOKEN) | |
| pipe_img2img.load_lora_weights("shellypeng/lora1") | |
| pipe_img2img.fuse_lora(lora_scale=0.1) | |
| pipe_img2img.load_lora_weights("shellypeng/lora2", token=HF_TOKEN) | |
| pipe_img2img.fuse_lora(lora_scale=0.1) | |
| pipe_img2img.load_textual_inversion("shellypeng/textinv1") | |
| pipe_img2img.load_textual_inversion("shellypeng/textinv2") | |
| pipe_img2img.load_textual_inversion("shellypeng/textinv3") | |
| pipe_img2img.load_textual_inversion("shellypeng/textinv4") | |
| pipe_img2img.scheduler = DPMSolverMultistepScheduler.from_config(pipe_img2img.scheduler.config, use_karras_sigmas=True) | |
| pipe_img2img.safety_checker = None | |
| pipe_img2img.requires_safety_checker = False | |
| pipe_img2img.to(device) | |
| pipe_img2img.safety_checker = lambda images, **kwargs: (images, [False] * len(images)) | |
| def real_to_anime(text, input_img): | |
| """ | |
| pass the sd model and do scribble to image | |
| include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial | |
| expression to improve hand) | |
| """ | |
| load_pipe_depth() | |
| input_img = Image.fromarray(input_img) | |
| input_img = load_image(input_img) | |
| input_img = depth_estimator(input_img)['depth'] | |
| res_image0 = pipe_depth(text, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0] | |
| res_image1 = pipe_depth(text, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0] | |
| res_image2 = pipe_depth(text, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0] | |
| res_image3 = pipe_depth(text, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0] | |
| return res_image0, res_image1, res_image2, res_image3 | |
| def scribble_to_image(text, neg_prompt_box, input_img): | |
| """ | |
| pass the sd model and do scribble to image | |
| include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial | |
| expression to improve hand) | |
| """ | |
| load_pipe_scribble() | |
| # if auto detect detects chinese => auto turn on chinese prompting checkbox | |
| # change param "bag" below to text, image param below to input_img | |
| input_img = Image.fromarray(input_img) | |
| input_img = hed(input_img, scribble=True) | |
| input_img = load_image(input_img) | |
| # global prompt | |
| lang_check_label = pipe(text, top_k=1, truncation=True)[0]['label'] | |
| lang_check_score = pipe(text, top_k=1, truncation=True)[0]['score'] | |
| if lang_check_label == 'zh' and lang_check_score >= 0.85: | |
| text = translate(text) | |
| compel_proc = Compel(tokenizer=pipe_scribble.tokenizer, text_encoder=pipe_scribble.text_encoder) | |
| prompt = text + hidden_booster_text | |
| prompt_embeds = compel_proc(prompt) | |
| negative_prompt = neg_prompt_box + hidden_negative | |
| negative_prompt_embeds = compel_proc(negative_prompt) | |
| res_image0 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0] | |
| res_image1 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0] | |
| res_image2 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0] | |
| res_image3 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0] | |
| return res_image0, res_image1, res_image2, res_image3 | |
| def real_img2img_to_anime(text, neg_prompt_box, input_img): | |
| """ | |
| pass the sd model and do scribble to image | |
| include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial | |
| expression to improve hand) | |
| """ | |
| load_pipe_img2img() | |
| input_img = Image.fromarray(input_img) | |
| input_img = load_image(input_img) | |
| lang_check_label = pipe(text, top_k=1, truncation=True)[0]['label'] | |
| lang_check_score = pipe(text, top_k=1, truncation=True)[0]['score'] | |
| if lang_check_label == 'zh' and lang_check_score >= 0.85: | |
| text = translate(text) | |
| compel_proc = Compel(tokenizer=pipe_img2img.tokenizer, text_encoder=pipe_img2img.text_encoder) | |
| prompt = text + hidden_booster_text | |
| prompt_embeds = compel_proc(prompt) | |
| negative_prompt = neg_prompt_box + hidden_negative | |
| negative_prompt_embeds = compel_proc(negative_prompt) | |
| # input_img = depth_estimator(input_img)['depth'] | |
| res_image0 = pipe_img2img(image=input_img, strength=0.8, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0] | |
| res_image1 = pipe_img2img(image=input_img, strength=0.8, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0] | |
| res_image2 = pipe_img2img(image=input_img, strength=0.8, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0] | |
| res_image3 = pipe_img2img(image=input_img, strength=0.8, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0] | |
| return res_image0, res_image1, res_image2, res_image3 | |
| theme = gr.themes.Soft( | |
| primary_hue="orange", | |
| secondary_hue="orange", | |
| ).set( | |
| block_background_fill='*primary_50' | |
| ) | |
| def zh_prompt_info(text, neg_text, chinese_check): | |
| can_raise_info = "" | |
| lang_check_label = pipe(text, top_k=1, truncation=True)[0]['label'] | |
| lang_check_score = pipe(text, top_k=1, truncation=True)[0]['score'] | |
| neg_lang_check_label = pipe(neg_text, top_k=1, truncation=True)[0]['label'] | |
| neg_lang_check_score = pipe(neg_text, top_k=1, truncation=True)[0]['score'] | |
| print(lang_check_label) | |
| if lang_check_label == 'zh' and lang_check_score >= 0.85: | |
| if not chinese_check: | |
| chinese_check = True | |
| can_raise_info = "zh" | |
| if neg_lang_check_label == 'en' and neg_lang_check_score >= 0.85: | |
| can_raise_info = "invalid" | |
| return True, can_raise_info | |
| elif lang_check_label == 'en' and lang_check_score >= 0.85: | |
| if chinese_check: | |
| chinese_check = False | |
| can_raise_info = "en" | |
| if neg_lang_check_label == 'zh' and neg_lang_check_score >= 0.85: | |
| can_raise_info = "invalid" | |
| return False, can_raise_info | |
| return chinese_check, can_raise_info | |
| def mult_thread_img2img(prompt_box, neg_prompt_box, image_box): | |
| with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor: | |
| future = executor.submit(real_img2img_to_anime, prompt_box, neg_prompt_box, image_box) | |
| image1, image2, image3, image4 = future.result() | |
| return image1, image2, image3, image4 | |
| def mult_thread_scribble(prompt_box, neg_prompt_box, image_box): | |
| with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor: | |
| future = executor.submit(scribble_to_image, prompt_box, neg_prompt_box, image_box) | |
| image1, image2, image3, image4 = future.result() | |
| return image1, image2, image3, image4 | |
| def mult_thread_live_scribble(prompt_box, neg_prompt_box, image_box): | |
| image_box = image_box["composite"] | |
| with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor: | |
| future = executor.submit(scribble_to_image, prompt_box, neg_prompt_box, image_box) | |
| image1, image2, image3, image4 = future.result() | |
| return image1, image2, image3, image4 | |
| def mult_thread_lang_class(prompt_box, neg_prompt_box, chinese_check): | |
| with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor: | |
| future = executor.submit(zh_prompt_info, prompt_box, neg_prompt_box, chinese_check) | |
| chinese_check, can_raise_info = future.result() | |
| if can_raise_info == "zh": | |
| gr.Info("Chinese Language Detected, Switching to Chinese Prompt Mode") | |
| elif can_raise_info == "en": | |
| gr.Info("English Language Detected, Disabling Chinese Prompt Mode") | |
| return chinese_check | |
| with gr.Blocks(theme=theme, css="footer {visibility: hidden}", title="ShellAI Apps") as iface: | |
| with gr.Tab("AnimeDepth(安妮深度)"): | |
| gr.Markdown( | |
| """ | |
| # AnimeDepth(安妮深度) | |
| Turns pictures into one in the anime style with depth-to-image controlnet. | |
| 将图片用深度图的方式转为动漫风图片。 | |
| """ | |
| ) | |
| with gr.Row(equal_height=True): | |
| with gr.Column(): | |
| with gr.Row(equal_height=True): | |
| with gr.Column(scale=4): | |
| prompt_box = gr.Textbox(label="Prompt(提示词)", placeholder="Enter a prompt\n输入提示词", lines=3) | |
| neg_prompt_box = gr.Textbox(label="Negative Prompt(负面提示词)", placeholder="Enter a negative prompt(things you don't want to include in the generated image)\n输入负面提示词:输入您不想生成的部分", lines=3) | |
| with gr.Row(equal_height=True): | |
| chinese_check = gr.Checkbox(label="Chinese Prompt Mode(中文提示词模式)", info="Click here to enable Chinese Prompting(点此触发中文提示词输入)") | |
| image_box = gr.Image(label="Input Image(上传图片)", height=400) | |
| gen_btn = gr.Button(value="Generate(生成)") | |
| with gr.Row(equal_height=True): | |
| image1 = gr.Image(label="Result 1(结果图 1)") | |
| image2 = gr.Image(label="Result 2(结果图 2)") | |
| image3 = gr.Image(label="Result 3(结果图 3)") | |
| image4 = gr.Image(label="Result 4(结果图 4)") | |
| example_img2img = [ | |
| ["漂亮的女孩,微笑,长发,黑发,粉色外套,白色内衬,优雅,红色背景,红色窗帘", "低画质", "sunmi.jpg"], | |
| ["Beautiful girl, smiling, bun, bun hair, black hair, beautiful eyes, black dress, elegant, red carpet photo","ugly, bad quality", "emma.jpg"] | |
| ] | |
| # gr.Examples(examples=example_img2img, inputs=[prompt_box, neg_prompt_box, image_box], outputs=[image1, image2, image3, image4], fn=mult_thread_img2img, cache_examples=True) | |
| gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_lang_class, inputs=[prompt_box, neg_prompt_box, chinese_check], outputs=[chinese_check], show_progress=False) | |
| gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=real_to_anime, inputs=[prompt_box, image_box], outputs=[image1, image2, image3, image4]) | |
| with gr.Tab("Animefier(安妮漫风)"): | |
| gr.Markdown( | |
| """ | |
| # Animefier(安妮漫风) | |
| Turns realistic photos into one in the anime style. | |
| 将真实图片转为动漫风图片。 | |
| """ | |
| ) | |
| with gr.Row(equal_height=True): | |
| with gr.Column(): | |
| with gr.Row(equal_height=True): | |
| with gr.Column(scale=4): | |
| prompt_box = gr.Textbox(label="Prompt(提示词)", placeholder="Enter a prompt\n输入提示词", lines=3) | |
| neg_prompt_box = gr.Textbox(label="Negative Prompt(负面提示词)", placeholder="Enter a negative prompt(things you don't want to include in the generated image)\n输入负面提示词:输入您不想生成的部分", lines=3) | |
| with gr.Row(equal_height=True): | |
| chinese_check = gr.Checkbox(label="Chinese Prompt Mode(中文提示词模式)", info="Click here to enable Chinese Prompting(点此触发中文提示词输入)") | |
| image_box = gr.Image(label="Input Image(上传图片)", height=400) | |
| gen_btn = gr.Button(value="Generate(生成)") | |
| with gr.Row(equal_height=True): | |
| image1 = gr.Image(label="Result 1(结果图 1)") | |
| image2 = gr.Image(label="Result 2(结果图 2)") | |
| image3 = gr.Image(label="Result 3(结果图 3)") | |
| image4 = gr.Image(label="Result 4(结果图 4)") | |
| example_img2img = [ | |
| ["漂亮的女孩,微笑,长发,黑发,粉色外套,白色内衬,优雅,红色背景,红色窗帘", "低画质", "sunmi.jpg"], | |
| ["Beautiful girl, smiling, bun, bun hair, black hair, beautiful eyes, black dress, elegant, red carpet photo","ugly, bad quality", "emma.jpg"] | |
| ] | |
| # gr.Examples(examples=example_img2img, inputs=[prompt_box, neg_prompt_box, image_box], outputs=[image1, image2, image3, image4], fn=mult_thread_img2img, cache_examples=True) | |
| gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_lang_class, inputs=[prompt_box, neg_prompt_box, chinese_check], outputs=[chinese_check], show_progress=False) | |
| gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_img2img, inputs=[prompt_box, neg_prompt_box, image_box], outputs=[image1, image2, image3, image4]) | |
| with gr.Tab("Live Sketch(实时涂鸦)"): | |
| gr.Markdown( | |
| """ | |
| # Live Sketch(实时涂鸦) | |
| Live draw sketches/scribbles and turns into one in the anime style. | |
| 实时涂鸦,将粗线条涂鸦转为动漫风图片。 | |
| """ | |
| ) | |
| with gr.Row(equal_height=True): | |
| with gr.Column(): | |
| with gr.Row(equal_height=True): | |
| with gr.Column(scale=4): | |
| prompt_box = gr.Textbox(label="Prompt(提示词)", placeholder="Enter a prompt\n输入提示词", lines=3) | |
| neg_prompt_box = gr.Textbox(label="Negative Prompt(负面提示词)", placeholder="Enter a negative prompt(things you don't want to include in the generated image)\n输入负面提示词:输入您不想生成的部分", lines=3) | |
| with gr.Row(equal_height=True): | |
| chinese_check = gr.Checkbox(label="Chinese Prompt Mode(中文提示词模式)", info="Click here to enable Chinese Prompting(点此触发中文提示词输入)") | |
| image_box = gr.ImageEditor(sources=(), brush=gr.Brush(default_size="5", color_mode="fixed", colors=["#000000"]), height=400) | |
| gen_btn = gr.Button(value="Generate(生成)") | |
| with gr.Row(equal_height=True): | |
| image1 = gr.Image(label="Result 1(结果图 1)") | |
| image2 = gr.Image(label="Result 2(结果图 2)") | |
| image3 = gr.Image(label="Result 3(结果图 3)") | |
| image4 = gr.Image(label="Result 4(结果图 4)") | |
| # sketch_image_box.change(fn=mult_thread_scribble, inputs=[prompt_box, neg_prompt_box, sketch_image_box], outputs=[image1, image2, image3, image4]) | |
| example_scribble_live2img = [ | |
| ["帅气的男孩,橙色头发++,皱眉,闭眼,深蓝色开襟毛衣,白色内衬,酷,冷漠,帅气,硝烟背景", "劣质", "sketch_boy.png"], | |
| ["a beautiful girl spreading her arms, blue hair, long hair, hat with flowers on its edge, smiling++, dynamic, black dress, park background, birds, trees, flowers, grass","ugly, worst quality", "girl_spread.jpg"] | |
| ] | |
| # gr.Examples(examples=example_scribble_live2img, inputs=[prompt_box, neg_prompt_box, image_box], outputs=[image1, image2, image3, image4], fn=mult_thread_live_scribble, cache_examples=True) | |
| gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_lang_class, inputs=[prompt_box, neg_prompt_box, chinese_check], outputs=[chinese_check], show_progress=False) | |
| gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_live_scribble, inputs=[prompt_box, neg_prompt_box, image_box], outputs=[image1, image2, image3, image4]) | |
| with gr.Tab("AniSketch(安妮涂鸦)"): | |
| gr.Markdown( | |
| """ | |
| # AniSketch(安妮涂鸦) | |
| Turns sketches/scribbles into one in the anime style. | |
| 将草图、粗线条涂鸦转为动漫风图片。 | |
| """ | |
| ) | |
| with gr.Row(equal_height=True): | |
| with gr.Column(): | |
| with gr.Row(equal_height=True): | |
| with gr.Column(scale=4): | |
| prompt_box = gr.Textbox(label="Prompt(提示词)", placeholder="Enter a prompt\n输入提示词", lines=3) | |
| neg_prompt_box = gr.Textbox(label="Negative Prompt(负面提示词)", placeholder="Enter a negative prompt(things you don't want to include in the generated image)\n输入负面提示词:输入您不想生成的部分", lines=3) | |
| with gr.Row(equal_height=True): | |
| chinese_check = gr.Checkbox(label="Chinese Prompt Mode(中文提示词模式)", info="Click here to enable Chinese Prompting(点此触发中文提示词输入)") | |
| image_box = gr.Image(label="Input Image(上传图片)", height=400) | |
| gen_btn = gr.Button(value="Generate(生成)") | |
| with gr.Row(equal_height=True): | |
| image1 = gr.Image(label="Result 1(结果图 1)") | |
| image2 = gr.Image(label="Result 2(结果图 2)") | |
| image3 = gr.Image(label="Result 3(结果图 3)") | |
| image4 = gr.Image(label="Result 4(结果图 4)") | |
| example_scribble2img = [ | |
| ["漂亮的女人,散开的长发,巫师,巫师袍,微笑,拍手,优雅,成熟,月夜背景", "水印", "final_witch.jpg"], | |
| ["a man wearing a chinese clothes, closed eyes, handsome face, dragon on the clothes, expressionless face, indifferent, chinese building background","poor quality", "chinese_man.jpg"] | |
| ] | |
| # gr.Examples(examples=example_scribble2img, inputs=[prompt_box, neg_prompt_box, image_box], outputs=[image1, image2, image3, image4], fn=mult_thread_scribble, cache_examples=True) | |
| gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_lang_class, inputs=[prompt_box, neg_prompt_box, chinese_check], outputs=[chinese_check], show_progress=False) | |
| gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_scribble, inputs=[prompt_box, neg_prompt_box, image_box], outputs=[image1, image2, image3, image4]) | |
| def run(): | |
| iface.queue(default_concurrency_limit=20).launch(debug=True, share=True) | |
| run() | |
| """# Separator | |
| """ | |