Spaces:
Runtime error
Runtime error
Commit
·
3efdcac
1
Parent(s):
5bef237
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,7 +7,6 @@ Original file is located at
|
|
| 7 |
https://colab.research.google.com/drive/1RxVCwOkq3Q5qlEkQxhFGeUxICBujjEjR
|
| 8 |
"""
|
| 9 |
|
| 10 |
-
|
| 11 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 12 |
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-zh-en")
|
|
@@ -24,10 +23,17 @@ from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCM
|
|
| 24 |
import torch
|
| 25 |
from controlnet_aux import HEDdetector
|
| 26 |
from diffusers.utils import load_image
|
|
|
|
| 27 |
import concurrent.futures
|
| 28 |
from threading import Thread
|
| 29 |
from compel import Compel
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
device="cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -37,6 +43,9 @@ hidden_negative = "big boobs, huge boobs, sexy, dirty, d cup, e cup, g cup, slut
|
|
| 37 |
hidden_cn_booster_text = "漂亮的脸,小胸,贫乳,a罩杯"
|
| 38 |
hidden_cn_negative = "大胸, ,, !, 。, ;,巨乳,性感,脏,d罩杯,e罩杯,g罩杯,骚,骚气,badhandv4, ng_deepnegative_v1_75t"
|
| 39 |
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
def translate(prompt):
|
| 42 |
trans_text = prompt
|
|
@@ -85,6 +94,7 @@ pipe_scribble.safety_checker = None
|
|
| 85 |
pipe_scribble.requires_safety_checker = False
|
| 86 |
pipe_scribble.to(device)
|
| 87 |
|
|
|
|
| 88 |
|
| 89 |
def scribble_to_image(text, input_img, chinese_check):
|
| 90 |
"""
|
|
@@ -92,13 +102,19 @@ def scribble_to_image(text, input_img, chinese_check):
|
|
| 92 |
include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
|
| 93 |
expression to improve hand)
|
| 94 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
# change param "bag" below to text, image param below to input_img
|
| 96 |
input_img = Image.fromarray(input_img)
|
| 97 |
input_img = hed(input_img, scribble=True)
|
| 98 |
input_img = load_image(input_img)
|
| 99 |
# global prompt
|
| 100 |
compel_proc = Compel(tokenizer=pipe_scribble.tokenizer, text_encoder=pipe_scribble.text_encoder)
|
| 101 |
-
|
|
|
|
|
|
|
| 102 |
text = translate(text)
|
| 103 |
print("prompt text:", text)
|
| 104 |
prompt = text + hidden_booster_text
|
|
@@ -111,6 +127,7 @@ def scribble_to_image(text, input_img, chinese_check):
|
|
| 111 |
|
| 112 |
return res_image0, res_image1, res_image2, res_image3
|
| 113 |
|
|
|
|
| 114 |
from PIL import Image
|
| 115 |
|
| 116 |
from transformers import pipeline
|
|
@@ -140,6 +157,7 @@ pipe_img2img.safety_checker = None
|
|
| 140 |
pipe_img2img.requires_safety_checker = False
|
| 141 |
pipe_img2img.to(device)
|
| 142 |
|
|
|
|
| 143 |
def real_img2img_to_anime(text, input_img, chinese_check):
|
| 144 |
"""
|
| 145 |
pass the sd model and do scribble to image
|
|
@@ -219,6 +237,7 @@ with gr.Blocks(theme=theme, css="footer {visibility: hidden}", title="ShellAI Ap
|
|
| 219 |
image_box = gr.Image(label="Input Image", height=350)
|
| 220 |
gen_btn = gr.Button(value="Generate")
|
| 221 |
with gr.Row(equal_height=True):
|
|
|
|
| 222 |
image1 = gr.Image()
|
| 223 |
image2 = gr.Image()
|
| 224 |
image3 = gr.Image()
|
|
@@ -228,8 +247,9 @@ with gr.Blocks(theme=theme, css="footer {visibility: hidden}", title="ShellAI Ap
|
|
| 228 |
with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
|
| 229 |
future = executor.submit(scribble_to_image, prompt_box, image_box, chinese_check)
|
| 230 |
image1, image2, image3, image4 = future.result()
|
|
|
|
| 231 |
return image1, image2, image3, image4
|
| 232 |
|
| 233 |
gen_btn.click(mult_thread, [prompt_box, image_box, chinese_check], [image1, image2, image3, image4])
|
| 234 |
|
| 235 |
-
iface.launch(debug=True, share=True, auth=["
|
|
|
|
| 7 |
https://colab.research.google.com/drive/1RxVCwOkq3Q5qlEkQxhFGeUxICBujjEjR
|
| 8 |
"""
|
| 9 |
|
|
|
|
| 10 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 11 |
|
| 12 |
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-zh-en")
|
|
|
|
| 23 |
import torch
|
| 24 |
from controlnet_aux import HEDdetector
|
| 25 |
from diffusers.utils import load_image
|
| 26 |
+
|
| 27 |
import concurrent.futures
|
| 28 |
from threading import Thread
|
| 29 |
from compel import Compel
|
| 30 |
|
| 31 |
+
from transformers import pipeline
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
model_ckpt = "papluca/xlm-roberta-base-language-detection"
|
| 35 |
+
pipe = pipeline("text-classification", model=model_ckpt)
|
| 36 |
+
|
| 37 |
|
| 38 |
|
| 39 |
device="cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 43 |
hidden_cn_booster_text = "漂亮的脸,小胸,贫乳,a罩杯"
|
| 44 |
hidden_cn_negative = "大胸, ,, !, 。, ;,巨乳,性感,脏,d罩杯,e罩杯,g罩杯,骚,骚气,badhandv4, ng_deepnegative_v1_75t"
|
| 45 |
|
| 46 |
+
# text_tokenizer = CLIPTokenizer.from_pretrained("IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-EN-v0.1")
|
| 47 |
+
# text_encoder = CLIPTextModel.from_pretrained("IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-EN-v0.1").eval()
|
| 48 |
+
# text_encoder = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16").eval()
|
| 49 |
|
| 50 |
def translate(prompt):
|
| 51 |
trans_text = prompt
|
|
|
|
| 94 |
pipe_scribble.requires_safety_checker = False
|
| 95 |
pipe_scribble.to(device)
|
| 96 |
|
| 97 |
+
text = "handsome doctor, black eyes, sparkling eyes, smiling, handsome, glasses, blue tie with yellow dots, doctor's white coat, white collar, blue gradient background"
|
| 98 |
|
| 99 |
def scribble_to_image(text, input_img, chinese_check):
|
| 100 |
"""
|
|
|
|
| 102 |
include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
|
| 103 |
expression to improve hand)
|
| 104 |
"""
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
# if auto detect detects chinese => auto turn on chinese prompting checkbox
|
| 109 |
# change param "bag" below to text, image param below to input_img
|
| 110 |
input_img = Image.fromarray(input_img)
|
| 111 |
input_img = hed(input_img, scribble=True)
|
| 112 |
input_img = load_image(input_img)
|
| 113 |
# global prompt
|
| 114 |
compel_proc = Compel(tokenizer=pipe_scribble.tokenizer, text_encoder=pipe_scribble.text_encoder)
|
| 115 |
+
lang_check_label = pipe(text, top_k=1, truncation=True)[0]['label']
|
| 116 |
+
lang_check_score = pipe(text, top_k=1, truncation=True)[0]['score']
|
| 117 |
+
if lang_check_label == 'zh' and lang_check_score >= 0.85:
|
| 118 |
text = translate(text)
|
| 119 |
print("prompt text:", text)
|
| 120 |
prompt = text + hidden_booster_text
|
|
|
|
| 127 |
|
| 128 |
return res_image0, res_image1, res_image2, res_image3
|
| 129 |
|
| 130 |
+
|
| 131 |
from PIL import Image
|
| 132 |
|
| 133 |
from transformers import pipeline
|
|
|
|
| 157 |
pipe_img2img.requires_safety_checker = False
|
| 158 |
pipe_img2img.to(device)
|
| 159 |
|
| 160 |
+
|
| 161 |
def real_img2img_to_anime(text, input_img, chinese_check):
|
| 162 |
"""
|
| 163 |
pass the sd model and do scribble to image
|
|
|
|
| 237 |
image_box = gr.Image(label="Input Image", height=350)
|
| 238 |
gen_btn = gr.Button(value="Generate")
|
| 239 |
with gr.Row(equal_height=True):
|
| 240 |
+
|
| 241 |
image1 = gr.Image()
|
| 242 |
image2 = gr.Image()
|
| 243 |
image3 = gr.Image()
|
|
|
|
| 247 |
with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
|
| 248 |
future = executor.submit(scribble_to_image, prompt_box, image_box, chinese_check)
|
| 249 |
image1, image2, image3, image4 = future.result()
|
| 250 |
+
|
| 251 |
return image1, image2, image3, image4
|
| 252 |
|
| 253 |
gen_btn.click(mult_thread, [prompt_box, image_box, chinese_check], [image1, image2, image3, image4])
|
| 254 |
|
| 255 |
+
iface.launch(debug=True, share=True, auth=["shenrym", "shjdqw%23-sw2&"])
|