Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| import functools | |
| class ActNorm(nn.Module): | |
| def __init__(self, num_features, logdet=False, affine=True, | |
| allow_reverse_init=False): | |
| assert affine | |
| super().__init__() | |
| self.logdet = logdet | |
| self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1)) | |
| self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1)) | |
| self.allow_reverse_init = allow_reverse_init | |
| self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8)) | |
| def initialize(self, input): | |
| with torch.no_grad(): | |
| flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1) | |
| mean = ( | |
| flatten.mean(1) | |
| .unsqueeze(1) | |
| .unsqueeze(2) | |
| .unsqueeze(3) | |
| .permute(1, 0, 2, 3) | |
| ) | |
| std = ( | |
| flatten.std(1) | |
| .unsqueeze(1) | |
| .unsqueeze(2) | |
| .unsqueeze(3) | |
| .permute(1, 0, 2, 3) | |
| ) | |
| self.loc.data.copy_(-mean) | |
| self.scale.data.copy_(1 / (std + 1e-6)) | |
| def forward(self, input, reverse=False): | |
| if reverse: | |
| return self.reverse(input) | |
| if len(input.shape) == 2: | |
| input = input[:,:,None,None] | |
| squeeze = True | |
| else: | |
| squeeze = False | |
| _, _, height, width = input.shape | |
| if self.training and self.initialized.item() == 0: | |
| self.initialize(input) | |
| self.initialized.fill_(1) | |
| h = self.scale * (input + self.loc) | |
| if squeeze: | |
| h = h.squeeze(-1).squeeze(-1) | |
| if self.logdet: | |
| log_abs = torch.log(torch.abs(self.scale)) | |
| logdet = height*width*torch.sum(log_abs) | |
| logdet = logdet * torch.ones(input.shape[0]).to(input) | |
| return h, logdet | |
| return h | |
| def reverse(self, output): | |
| if self.training and self.initialized.item() == 0: | |
| if not self.allow_reverse_init: | |
| raise RuntimeError( | |
| "Initializing ActNorm in reverse direction is " | |
| "disabled by default. Use allow_reverse_init=True to enable." | |
| ) | |
| else: | |
| self.initialize(output) | |
| self.initialized.fill_(1) | |
| if len(output.shape) == 2: | |
| output = output[:,:,None,None] | |
| squeeze = True | |
| else: | |
| squeeze = False | |
| h = output / self.scale - self.loc | |
| if squeeze: | |
| h = h.squeeze(-1).squeeze(-1) | |
| return h | |
| ################# | |
| # Discriminator # | |
| ################# | |
| def weights_init(m): | |
| classname = m.__class__.__name__ | |
| if classname.find('Conv') != -1: | |
| nn.init.normal_(m.weight.data, 0.0, 0.02) | |
| elif classname.find('BatchNorm') != -1: | |
| nn.init.normal_(m.weight.data, 1.0, 0.02) | |
| nn.init.constant_(m.bias.data, 0) | |
| class NLayerDiscriminator(nn.Module): | |
| """Defines a PatchGAN discriminator as in Pix2Pix | |
| --> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py | |
| """ | |
| def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False): | |
| """Construct a PatchGAN discriminator | |
| Parameters: | |
| input_nc (int) -- the number of channels in input images | |
| ndf (int) -- the number of filters in the last conv layer | |
| n_layers (int) -- the number of conv layers in the discriminator | |
| norm_layer -- normalization layer | |
| """ | |
| super(NLayerDiscriminator, self).__init__() | |
| if not use_actnorm: | |
| norm_layer = nn.BatchNorm2d | |
| else: | |
| norm_layer = ActNorm | |
| if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters | |
| use_bias = norm_layer.func != nn.BatchNorm2d | |
| else: | |
| use_bias = norm_layer != nn.BatchNorm2d | |
| kw = 4 | |
| padw = 1 | |
| sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] | |
| nf_mult = 1 | |
| nf_mult_prev = 1 | |
| for n in range(1, n_layers): # gradually increase the number of filters | |
| nf_mult_prev = nf_mult | |
| nf_mult = min(2 ** n, 8) | |
| sequence += [ | |
| nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), | |
| norm_layer(ndf * nf_mult), | |
| nn.LeakyReLU(0.2, True) | |
| ] | |
| nf_mult_prev = nf_mult | |
| nf_mult = min(2 ** n_layers, 8) | |
| sequence += [ | |
| nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), | |
| norm_layer(ndf * nf_mult), | |
| nn.LeakyReLU(0.2, True) | |
| ] | |
| sequence += [ | |
| nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map | |
| self.main = nn.Sequential(*sequence) | |
| def forward(self, input): | |
| """Standard forward.""" | |
| return self.main(input) | |
| ######### | |
| # LPIPS # | |
| ######### | |
| class ScalingLayer(nn.Module): | |
| def __init__(self): | |
| super(ScalingLayer, self).__init__() | |
| self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None]) | |
| self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None]) | |
| def forward(self, inp): | |
| return (inp - self.shift) / self.scale | |
| class NetLinLayer(nn.Module): | |
| """ A single linear layer which does a 1x1 conv """ | |
| def __init__(self, chn_in, chn_out=1, use_dropout=False): | |
| super(NetLinLayer, self).__init__() | |
| layers = [nn.Dropout(), ] if (use_dropout) else [] | |
| layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ] | |
| self.model = nn.Sequential(*layers) | |
| from collections import namedtuple | |
| from torchvision import models | |
| from torchvision.models import VGG16_Weights | |
| class vgg16(torch.nn.Module): | |
| def __init__(self, requires_grad=False, pretrained=True): | |
| super(vgg16, self).__init__() | |
| if pretrained: | |
| vgg_pretrained_features = models.vgg16(weights=VGG16_Weights.IMAGENET1K_V1).features | |
| self.slice1 = torch.nn.Sequential() | |
| self.slice2 = torch.nn.Sequential() | |
| self.slice3 = torch.nn.Sequential() | |
| self.slice4 = torch.nn.Sequential() | |
| self.slice5 = torch.nn.Sequential() | |
| self.N_slices = 5 | |
| for x in range(4): | |
| self.slice1.add_module(str(x), vgg_pretrained_features[x]) | |
| for x in range(4, 9): | |
| self.slice2.add_module(str(x), vgg_pretrained_features[x]) | |
| for x in range(9, 16): | |
| self.slice3.add_module(str(x), vgg_pretrained_features[x]) | |
| for x in range(16, 23): | |
| self.slice4.add_module(str(x), vgg_pretrained_features[x]) | |
| for x in range(23, 30): | |
| self.slice5.add_module(str(x), vgg_pretrained_features[x]) | |
| if not requires_grad: | |
| for param in self.parameters(): | |
| param.requires_grad = False | |
| def forward(self, X): | |
| h = self.slice1(X) | |
| h_relu1_2 = h | |
| h = self.slice2(h) | |
| h_relu2_2 = h | |
| h = self.slice3(h) | |
| h_relu3_3 = h | |
| h = self.slice4(h) | |
| h_relu4_3 = h | |
| h = self.slice5(h) | |
| h_relu5_3 = h | |
| vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3']) | |
| out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3) | |
| return out | |
| def normalize_tensor(x,eps=1e-10): | |
| norm_factor = torch.sqrt(torch.sum(x**2,dim=1,keepdim=True)) | |
| return x/(norm_factor+eps) | |
| def spatial_average(x, keepdim=True): | |
| return x.mean([2,3],keepdim=keepdim) | |
| def get_ckpt_path(*args, **kwargs): | |
| return 'pretrained/lpips.pth' | |
| class LPIPS(nn.Module): | |
| # Learned perceptual metric | |
| def __init__(self, use_dropout=True): | |
| super().__init__() | |
| self.scaling_layer = ScalingLayer() | |
| self.chns = [64, 128, 256, 512, 512] # vg16 features | |
| self.net = vgg16(pretrained=True, requires_grad=False) | |
| self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout) | |
| self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout) | |
| self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout) | |
| self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout) | |
| self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout) | |
| self.load_from_pretrained() | |
| for param in self.parameters(): | |
| param.requires_grad = False | |
| def load_from_pretrained(self, name="vgg_lpips"): | |
| ckpt = get_ckpt_path(name, "taming/modules/autoencoder/lpips") | |
| self.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False) | |
| print("loaded pretrained LPIPS loss from {}".format(ckpt)) | |
| def from_pretrained(cls, name="vgg_lpips"): | |
| if name != "vgg_lpips": | |
| raise NotImplementedError | |
| model = cls() | |
| ckpt = get_ckpt_path(name) | |
| model.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False) | |
| return model | |
| def forward(self, input, target): | |
| in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target)) | |
| outs0, outs1 = self.net(in0_input), self.net(in1_input) | |
| feats0, feats1, diffs = {}, {}, {} | |
| lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4] | |
| for kk in range(len(self.chns)): | |
| feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk]) | |
| diffs[kk] = (feats0[kk] - feats1[kk]) ** 2 | |
| res = [spatial_average(lins[kk].model(diffs[kk]), keepdim=True) for kk in range(len(self.chns))] | |
| val = res[0] | |
| for l in range(1, len(self.chns)): | |
| val += res[l] | |
| return val | |
| ############ | |
| # The loss # | |
| ############ | |
| def adopt_weight(weight, global_step, threshold=0, value=0.): | |
| if global_step < threshold: | |
| weight = value | |
| return weight | |
| def hinge_d_loss(logits_real, logits_fake): | |
| loss_real = torch.mean(F.relu(1. - logits_real)) | |
| loss_fake = torch.mean(F.relu(1. + logits_fake)) | |
| d_loss = 0.5 * (loss_real + loss_fake) | |
| return d_loss | |
| def vanilla_d_loss(logits_real, logits_fake): | |
| d_loss = 0.5 * ( | |
| torch.mean(torch.nn.functional.softplus(-logits_real)) + | |
| torch.mean(torch.nn.functional.softplus(logits_fake))) | |
| return d_loss | |
| class LPIPSWithDiscriminator(nn.Module): | |
| def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0, | |
| disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0, | |
| perceptual_weight=1.0, use_actnorm=False, disc_conditional=False, | |
| disc_loss="hinge"): | |
| super().__init__() | |
| assert disc_loss in ["hinge", "vanilla"] | |
| self.kl_weight = kl_weight | |
| self.pixel_weight = pixelloss_weight | |
| self.perceptual_loss = LPIPS().eval() | |
| self.perceptual_weight = perceptual_weight | |
| # output log variance | |
| self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init) | |
| self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels, | |
| n_layers=disc_num_layers, | |
| use_actnorm=use_actnorm | |
| ).apply(weights_init) | |
| self.discriminator_iter_start = disc_start | |
| self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss | |
| self.disc_factor = disc_factor | |
| self.discriminator_weight = disc_weight | |
| self.disc_conditional = disc_conditional | |
| def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): | |
| if last_layer is not None: | |
| nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] | |
| g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] | |
| else: | |
| nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0] | |
| g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0] | |
| d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) | |
| d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() | |
| d_weight = d_weight * self.discriminator_weight | |
| return d_weight | |
| def forward(self, inputs, reconstructions, posteriors, optimizer_idx, | |
| global_step, last_layer=None, cond=None, split="train", | |
| weights=None): | |
| rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()) | |
| if self.perceptual_weight > 0: | |
| p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous()) | |
| rec_loss = rec_loss + self.perceptual_weight * p_loss | |
| nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar | |
| weighted_nll_loss = nll_loss | |
| if weights is not None: | |
| weighted_nll_loss = weights*nll_loss | |
| weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0] | |
| nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] | |
| kl_loss = posteriors.kl() | |
| kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] | |
| # now the GAN part | |
| if optimizer_idx == 0: | |
| # generator update | |
| if cond is None: | |
| assert not self.disc_conditional | |
| logits_fake = self.discriminator(reconstructions.contiguous()) | |
| else: | |
| assert self.disc_conditional | |
| logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1)) | |
| g_loss = -torch.mean(logits_fake) | |
| if self.disc_factor > 0.0: | |
| try: | |
| d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer) | |
| except RuntimeError: | |
| assert not self.training | |
| d_weight = torch.tensor(0.0) | |
| else: | |
| d_weight = torch.tensor(0.0) | |
| disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) | |
| loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss | |
| log = {"Loss": loss.clone().detach().mean(), | |
| "logvar": self.logvar.detach(), | |
| "loss_kl": kl_loss.detach().mean(), | |
| "loss_nll": nll_loss.detach().mean(), | |
| "loss_rec": rec_loss.detach().mean(), | |
| "d_weight": d_weight.detach(), | |
| "disc_factor": torch.tensor(disc_factor), | |
| "loss_g": g_loss.detach().mean(), | |
| } | |
| return loss, log | |
| if optimizer_idx == 1: | |
| # second pass for discriminator update | |
| if cond is None: | |
| logits_real = self.discriminator(inputs.contiguous().detach()) | |
| logits_fake = self.discriminator(reconstructions.contiguous().detach()) | |
| else: | |
| logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1)) | |
| logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1)) | |
| disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) | |
| d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) | |
| log = {"Loss": d_loss.clone().detach().mean(), | |
| "loss_disc": d_loss.clone().detach().mean(), | |
| "logits_real": logits_real.detach().mean(), | |
| "logits_fake": logits_fake.detach().mean() | |
| } | |
| return d_loss, log | |