Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
| # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Configuration base class and utilities.""" | |
| from __future__ import (absolute_import, division, print_function, | |
| unicode_literals) | |
| import copy | |
| import json | |
| import logging | |
| import os | |
| from io import open | |
| from .file_utils import cached_path, CONFIG_NAME | |
| logger = logging.getLogger(__name__) | |
| class PretrainedConfig(object): | |
| r""" Base class for all configuration classes. | |
| Handles a few parameters common to all models' configurations as well as methods for loading/downloading/saving configurations. | |
| Note: | |
| A configuration file can be loaded and saved to disk. Loading the configuration file and using this file to initialize a model does **not** load the model weights. | |
| It only affects the model's configuration. | |
| Class attributes (overridden by derived classes): | |
| - ``pretrained_config_archive_map``: a python ``dict`` of with `short-cut-names` (string) as keys and `url` (string) of associated pretrained model configurations as values. | |
| Parameters: | |
| ``finetuning_task``: string, default `None`. Name of the task used to fine-tune the model. This can be used when converting from an original (TensorFlow or PyTorch) checkpoint. | |
| ``num_labels``: integer, default `2`. Number of classes to use when the model is a classification model (sequences/tokens) | |
| ``output_attentions``: boolean, default `False`. Should the model returns attentions weights. | |
| ``output_hidden_states``: string, default `False`. Should the model returns all hidden-states. | |
| ``torchscript``: string, default `False`. Is the model used with Torchscript. | |
| """ | |
| pretrained_config_archive_map = {} | |
| def __init__(self, **kwargs): | |
| self.finetuning_task = kwargs.pop('finetuning_task', None) | |
| self.num_labels = kwargs.pop('num_labels', 2) | |
| self.output_attentions = kwargs.pop('output_attentions', False) | |
| self.output_hidden_states = kwargs.pop('output_hidden_states', False) | |
| self.torchscript = kwargs.pop('torchscript', False) | |
| self.pruned_heads = kwargs.pop('pruned_heads', {}) | |
| def save_pretrained(self, save_directory): | |
| """ Save a configuration object to the directory `save_directory`, so that it | |
| can be re-loaded using the :func:`~pytorch_transformers.PretrainedConfig.from_pretrained` class method. | |
| """ | |
| assert os.path.isdir(save_directory), "Saving path should be a directory where the model and configuration can be saved" | |
| # If we save using the predefined names, we can load using `from_pretrained` | |
| output_config_file = os.path.join(save_directory, CONFIG_NAME) | |
| self.to_json_file(output_config_file) | |
| def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): | |
| r""" Instantiate a :class:`~pytorch_transformers.PretrainedConfig` (or a derived class) from a pre-trained model configuration. | |
| Parameters: | |
| pretrained_model_name_or_path: either: | |
| - a string with the `shortcut name` of a pre-trained model configuration to load from cache or download, e.g.: ``bert-base-uncased``. | |
| - a path to a `directory` containing a configuration file saved using the :func:`~pytorch_transformers.PretrainedConfig.save_pretrained` method, e.g.: ``./my_model_directory/``. | |
| - a path or url to a saved configuration JSON `file`, e.g.: ``./my_model_directory/configuration.json``. | |
| cache_dir: (`optional`) string: | |
| Path to a directory in which a downloaded pre-trained model | |
| configuration should be cached if the standard cache should not be used. | |
| kwargs: (`optional`) dict: key/value pairs with which to update the configuration object after loading. | |
| - The values in kwargs of any keys which are configuration attributes will be used to override the loaded values. | |
| - Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled by the `return_unused_kwargs` keyword parameter. | |
| force_download: (`optional`) boolean, default False: | |
| Force to (re-)download the model weights and configuration files and override the cached versions if they exists. | |
| proxies: (`optional`) dict, default None: | |
| A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. | |
| The proxies are used on each request. | |
| return_unused_kwargs: (`optional`) bool: | |
| - If False, then this function returns just the final configuration object. | |
| - If True, then this functions returns a tuple `(config, unused_kwargs)` where `unused_kwargs` is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: ie the part of kwargs which has not been used to update `config` and is otherwise ignored. | |
| Examples:: | |
| # We can't instantiate directly the base class `PretrainedConfig` so let's show the examples on a | |
| # derived class: BertConfig | |
| config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache. | |
| config = BertConfig.from_pretrained('./test/saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')` | |
| config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json') | |
| config = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False) | |
| assert config.output_attention == True | |
| config, unused_kwargs = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, | |
| foo=False, return_unused_kwargs=True) | |
| assert config.output_attention == True | |
| assert unused_kwargs == {'foo': False} | |
| """ | |
| cache_dir = kwargs.pop('cache_dir', None) | |
| force_download = kwargs.pop('force_download', False) | |
| proxies = kwargs.pop('proxies', None) | |
| return_unused_kwargs = kwargs.pop('return_unused_kwargs', False) | |
| if pretrained_model_name_or_path in cls.pretrained_config_archive_map: | |
| config_file = cls.pretrained_config_archive_map[pretrained_model_name_or_path] | |
| elif os.path.isdir(pretrained_model_name_or_path): | |
| config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME) | |
| else: | |
| config_file = pretrained_model_name_or_path | |
| # redirect to the cache, if necessary | |
| try: | |
| resolved_config_file = cached_path(config_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies) | |
| except EnvironmentError as e: | |
| if pretrained_model_name_or_path in cls.pretrained_config_archive_map: | |
| logger.error( | |
| "Couldn't reach server at '{}' to download pretrained model configuration file.".format( | |
| config_file)) | |
| else: | |
| logger.error( | |
| "Model name '{}' was not found in model name list ({}). " | |
| "We assumed '{}' was a path or url but couldn't find any file " | |
| "associated to this path or url.".format( | |
| pretrained_model_name_or_path, | |
| ', '.join(cls.pretrained_config_archive_map.keys()), | |
| config_file)) | |
| raise e | |
| if resolved_config_file == config_file: | |
| logger.info("loading configuration file {}".format(config_file)) | |
| else: | |
| logger.info("loading configuration file {} from cache at {}".format( | |
| config_file, resolved_config_file)) | |
| # Load config | |
| config = cls.from_json_file(resolved_config_file) | |
| if hasattr(config, 'pruned_heads'): | |
| config.pruned_heads = dict((int(key), set(value)) for key, value in config.pruned_heads.items()) | |
| # Update config with kwargs if needed | |
| to_remove = [] | |
| for key, value in kwargs.items(): | |
| if hasattr(config, key): | |
| setattr(config, key, value) | |
| to_remove.append(key) | |
| for key in to_remove: | |
| kwargs.pop(key, None) | |
| logger.info("Model config %s", config) | |
| if return_unused_kwargs: | |
| return config, kwargs | |
| else: | |
| return config | |
| def from_dict(cls, json_object): | |
| """Constructs a `Config` from a Python dictionary of parameters.""" | |
| config = cls(vocab_size_or_config_json_file=-1) | |
| for key, value in json_object.items(): | |
| config.__dict__[key] = value | |
| return config | |
| def from_json_file(cls, json_file): | |
| """Constructs a `BertConfig` from a json file of parameters.""" | |
| with open(json_file, "r", encoding='utf-8') as reader: | |
| text = reader.read() | |
| return cls.from_dict(json.loads(text)) | |
| def __eq__(self, other): | |
| return self.__dict__ == other.__dict__ | |
| def __repr__(self): | |
| return str(self.to_json_string()) | |
| def to_dict(self): | |
| """Serializes this instance to a Python dictionary.""" | |
| output = copy.deepcopy(self.__dict__) | |
| return output | |
| def to_json_string(self): | |
| """Serializes this instance to a JSON string.""" | |
| return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" | |
| def to_json_file(self, json_file_path): | |
| """ Save this instance to a json file.""" | |
| with open(json_file_path, "w", encoding='utf-8') as writer: | |
| writer.write(self.to_json_string()) | |