Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
| # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """PyTorch BERT model.""" | |
| from __future__ import (absolute_import, division, print_function, | |
| unicode_literals) | |
| import pdb | |
| import copy | |
| import json | |
| import logging | |
| import os | |
| from io import open | |
| import six | |
| import torch | |
| from torch import nn | |
| from torch.nn import CrossEntropyLoss | |
| from torch.nn import functional as F | |
| from .configuration_utils import PretrainedConfig | |
| from .file_utils import cached_path, WEIGHTS_NAME, TF_WEIGHTS_NAME | |
| logger = logging.getLogger(__name__) | |
| try: | |
| from torch.nn import Identity | |
| except ImportError: | |
| # Older PyTorch compatibility | |
| class Identity(nn.Module): | |
| r"""A placeholder identity operator that is argument-insensitive. | |
| """ | |
| def __init__(self, *args, **kwargs): | |
| super(Identity, self).__init__() | |
| def forward(self, input): | |
| return input | |
| class PreTrainedModel(nn.Module): | |
| r""" Base class for all models. | |
| :class:`~pytorch_transformers.PreTrainedModel` takes care of storing the configuration of the models and handles methods for loading/downloading/saving models | |
| as well as a few methods commons to all models to (i) resize the input embeddings and (ii) prune heads in the self-attention heads. | |
| Class attributes (overridden by derived classes): | |
| - ``config_class``: a class derived from :class:`~pytorch_transformers.PretrainedConfig` to use as configuration class for this model architecture. | |
| - ``pretrained_model_archive_map``: a python ``dict`` of with `short-cut-names` (string) as keys and `url` (string) of associated pretrained weights as values. | |
| - ``load_tf_weights``: a python ``method`` for loading a TensorFlow checkpoint in a PyTorch model, taking as arguments: | |
| - ``model``: an instance of the relevant subclass of :class:`~pytorch_transformers.PreTrainedModel`, | |
| - ``config``: an instance of the relevant subclass of :class:`~pytorch_transformers.PretrainedConfig`, | |
| - ``path``: a path (string) to the TensorFlow checkpoint. | |
| - ``base_model_prefix``: a string indicating the attribute associated to the base model in derived classes of the same architecture adding modules on top of the base model. | |
| """ | |
| config_class = None | |
| pretrained_model_archive_map = {} | |
| load_tf_weights = lambda model, config, path: None | |
| base_model_prefix = "" | |
| def __init__(self, config, *inputs, **kwargs): | |
| super(PreTrainedModel, self).__init__() | |
| if not isinstance(config, PretrainedConfig): | |
| raise ValueError( | |
| "Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. " | |
| "To create a model from a pretrained model use " | |
| "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( | |
| self.__class__.__name__, self.__class__.__name__ | |
| )) | |
| # Save config in model | |
| self.config = config | |
| def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None): | |
| """ Build a resized Embedding Module from a provided token Embedding Module. | |
| Increasing the size will add newly initialized vectors at the end | |
| Reducing the size will remove vectors from the end | |
| Args: | |
| new_num_tokens: (`optional`) int | |
| New number of tokens in the embedding matrix. | |
| Increasing the size will add newly initialized vectors at the end | |
| Reducing the size will remove vectors from the end | |
| If not provided or None: return the provided token Embedding Module. | |
| Return: ``torch.nn.Embeddings`` | |
| Pointer to the resized Embedding Module or the old Embedding Module if new_num_tokens is None | |
| """ | |
| if new_num_tokens is None: | |
| return old_embeddings | |
| old_num_tokens, old_embedding_dim = old_embeddings.weight.size() | |
| if old_num_tokens == new_num_tokens: | |
| return old_embeddings | |
| # Build new embeddings | |
| new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim) | |
| new_embeddings.to(old_embeddings.weight.device) | |
| # initialize all new embeddings (in particular added tokens) | |
| self._init_weights(new_embeddings) | |
| # Copy word embeddings from the previous weights | |
| num_tokens_to_copy = min(old_num_tokens, new_num_tokens) | |
| new_embeddings.weight.data[:num_tokens_to_copy, :] = old_embeddings.weight.data[:num_tokens_to_copy, :] | |
| return new_embeddings | |
| def _tie_or_clone_weights(self, first_module, second_module): | |
| """ Tie or clone module weights depending of weither we are using TorchScript or not | |
| """ | |
| if self.config.torchscript: | |
| first_module.weight = nn.Parameter(second_module.weight.clone()) | |
| else: | |
| first_module.weight = second_module.weight | |
| if hasattr(first_module, 'bias') and first_module.bias is not None: | |
| first_module.bias.data = torch.nn.functional.pad( | |
| first_module.bias.data, | |
| (0, first_module.weight.shape[0] - first_module.bias.shape[0]), | |
| 'constant', | |
| 0 | |
| ) | |
| def resize_token_embeddings(self, new_num_tokens=None): | |
| """ Resize input token embeddings matrix of the model if new_num_tokens != config.vocab_size. | |
| Take care of tying weights embeddings afterwards if the model class has a `tie_weights()` method. | |
| Arguments: | |
| new_num_tokens: (`optional`) int: | |
| New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. | |
| If not provided or None: does nothing and just returns a pointer to the input tokens ``torch.nn.Embeddings`` Module of the model. | |
| Return: ``torch.nn.Embeddings`` | |
| Pointer to the input tokens Embeddings Module of the model | |
| """ | |
| base_model = getattr(self, self.base_model_prefix, self) # get the base model if needed | |
| model_embeds = base_model._resize_token_embeddings(new_num_tokens) | |
| if new_num_tokens is None: | |
| return model_embeds | |
| # Update base model and current model config | |
| self.config.vocab_size = new_num_tokens | |
| base_model.vocab_size = new_num_tokens | |
| # Tie weights again if needed | |
| if hasattr(self, 'tie_weights'): | |
| self.tie_weights() | |
| return model_embeds | |
| def init_weights(self): | |
| """ Initialize and prunes weights if needed. """ | |
| # Initialize weights | |
| self.apply(self._init_weights) | |
| # Prune heads if needed | |
| if self.config.pruned_heads: | |
| self.prune_heads(self.config.pruned_heads) | |
| def prune_heads(self, heads_to_prune): | |
| """ Prunes heads of the base model. | |
| Arguments: | |
| heads_to_prune: dict with keys being selected layer indices (`int`) and associated values being the list of heads to prune in said layer (list of `int`). | |
| E.g. {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2. | |
| """ | |
| base_model = getattr(self, self.base_model_prefix, self) # get the base model if needed | |
| # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads | |
| for layer, heads in heads_to_prune.items(): | |
| union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads) | |
| self.config.pruned_heads[layer] = list(union_heads) # Unfortunately we have to store it as list for JSON | |
| base_model._prune_heads(heads_to_prune) | |
| def save_pretrained(self, save_directory): | |
| """ Save a model and its configuration file to a directory, so that it | |
| can be re-loaded using the `:func:`~pytorch_transformers.PreTrainedModel.from_pretrained`` class method. | |
| """ | |
| assert os.path.isdir(save_directory), "Saving path should be a directory where the model and configuration can be saved" | |
| # Only save the model it-self if we are using distributed training | |
| model_to_save = self.module if hasattr(self, 'module') else self | |
| # Save configuration file | |
| model_to_save.config.save_pretrained(save_directory) | |
| # If we save using the predefined names, we can load using `from_pretrained` | |
| output_model_file = os.path.join(save_directory, WEIGHTS_NAME) | |
| torch.save(model_to_save.state_dict(), output_model_file) | |
| def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): | |
| r"""Instantiate a pretrained pytorch model from a pre-trained model configuration. | |
| The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated) | |
| To train the model, you should first set it back in training mode with ``model.train()`` | |
| The warning ``Weights from XXX not initialized from pretrained model`` means that the weights of XXX do not come pre-trained with the rest of the model. | |
| It is up to you to train those weights with a downstream fine-tuning task. | |
| The warning ``Weights from XXX not used in YYY`` means that the layer XXX is not used by YYY, therefore those weights are discarded. | |
| Parameters: | |
| pretrained_model_name_or_path: either: | |
| - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. | |
| - a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. | |
| - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. | |
| model_args: (`optional`) Sequence of positional arguments: | |
| All remaning positional arguments will be passed to the underlying model's ``__init__`` method | |
| config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`: | |
| Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: | |
| - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or | |
| - the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. | |
| - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. | |
| state_dict: (`optional`) dict: | |
| an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file. | |
| This option can be used if you want to create a model from a pretrained configuration but load your own weights. | |
| In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option. | |
| cache_dir: (`optional`) string: | |
| Path to a directory in which a downloaded pre-trained model | |
| configuration should be cached if the standard cache should not be used. | |
| force_download: (`optional`) boolean, default False: | |
| Force to (re-)download the model weights and configuration files and override the cached versions if they exists. | |
| proxies: (`optional`) dict, default None: | |
| A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. | |
| The proxies are used on each request. | |
| output_loading_info: (`optional`) boolean: | |
| Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. | |
| kwargs: (`optional`) Remaining dictionary of keyword arguments: | |
| Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded: | |
| - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done) | |
| - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function. | |
| Examples:: | |
| model = BertModel.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. | |
| model = BertModel.from_pretrained('./test/saved_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` | |
| model = BertModel.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading | |
| assert model.config.output_attention == True | |
| # Loading from a TF checkpoint file instead of a PyTorch model (slower) | |
| config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json') | |
| model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config) | |
| """ | |
| config = kwargs.pop('config', None) | |
| state_dict = kwargs.pop('state_dict', None) | |
| cache_dir = kwargs.pop('cache_dir', None) | |
| from_tf = kwargs.pop('from_tf', False) | |
| force_download = kwargs.pop('force_download', False) | |
| proxies = kwargs.pop('proxies', None) | |
| output_loading_info = kwargs.pop('output_loading_info', False) | |
| # Load config | |
| if config is None: | |
| config, model_kwargs = cls.config_class.from_pretrained( | |
| pretrained_model_name_or_path, *model_args, | |
| cache_dir=cache_dir, return_unused_kwargs=True, | |
| force_download=force_download, | |
| **kwargs | |
| ) | |
| else: | |
| model_kwargs = kwargs | |
| # Load model | |
| if pretrained_model_name_or_path in cls.pretrained_model_archive_map: | |
| archive_file = cls.pretrained_model_archive_map[pretrained_model_name_or_path] | |
| elif os.path.isdir(pretrained_model_name_or_path): | |
| if from_tf: | |
| # Directly load from a TensorFlow checkpoint | |
| archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index") | |
| else: | |
| archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) | |
| else: | |
| if from_tf: | |
| # Directly load from a TensorFlow checkpoint | |
| archive_file = pretrained_model_name_or_path + ".index" | |
| else: | |
| archive_file = pretrained_model_name_or_path | |
| # redirect to the cache, if necessary | |
| try: | |
| resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies) | |
| except EnvironmentError as e: | |
| if pretrained_model_name_or_path in cls.pretrained_model_archive_map: | |
| logger.error( | |
| "Couldn't reach server at '{}' to download pretrained weights.".format( | |
| archive_file)) | |
| else: | |
| logger.error( | |
| "Model name '{}' was not found in model name list ({}). " | |
| "We assumed '{}' was a path or url but couldn't find any file " | |
| "associated to this path or url.".format( | |
| pretrained_model_name_or_path, | |
| ', '.join(cls.pretrained_model_archive_map.keys()), | |
| archive_file)) | |
| raise e | |
| if resolved_archive_file == archive_file: | |
| logger.info("loading weights file {}".format(archive_file)) | |
| else: | |
| logger.info("loading weights file {} from cache at {}".format( | |
| archive_file, resolved_archive_file)) | |
| # Instantiate model. | |
| model = cls(config, *model_args, **model_kwargs) | |
| if state_dict is None and not from_tf: | |
| state_dict = torch.load(resolved_archive_file, map_location='cpu') | |
| if from_tf: | |
| # Directly load from a TensorFlow checkpoint | |
| return cls.load_tf_weights(model, config, resolved_archive_file[:-6]) # Remove the '.index' | |
| # Convert old format to new format if needed from a PyTorch state_dict | |
| old_keys = [] | |
| new_keys = [] | |
| for key in state_dict.keys(): | |
| new_key = None | |
| if 'gamma' in key: | |
| new_key = key.replace('gamma', 'weight') | |
| if 'beta' in key: | |
| new_key = key.replace('beta', 'bias') | |
| if new_key: | |
| old_keys.append(key) | |
| new_keys.append(new_key) | |
| for old_key, new_key in zip(old_keys, new_keys): | |
| state_dict[new_key] = state_dict.pop(old_key) | |
| # Load from a PyTorch state_dict | |
| missing_keys = [] | |
| unexpected_keys = [] | |
| error_msgs = [] | |
| # copy state_dict so _load_from_state_dict can modify it | |
| metadata = getattr(state_dict, '_metadata', None) | |
| state_dict = state_dict.copy() | |
| if metadata is not None: | |
| state_dict._metadata = metadata | |
| def load(module, prefix=''): | |
| local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) | |
| module._load_from_state_dict( | |
| state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) | |
| for name, child in module._modules.items(): | |
| if child is not None: | |
| load(child, prefix + name + '.') | |
| # Make sure we are able to load base models as well as derived models (with heads) | |
| start_prefix = '' | |
| model_to_load = model | |
| if not hasattr(model, cls.base_model_prefix) and any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()): | |
| start_prefix = cls.base_model_prefix + '.' | |
| if hasattr(model, cls.base_model_prefix) and not any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()): | |
| model_to_load = getattr(model, cls.base_model_prefix) | |
| load(model_to_load, prefix=start_prefix) | |
| if len(missing_keys) > 0: | |
| logger.info("Weights of {} not initialized from pretrained model: {}".format( | |
| model.__class__.__name__, missing_keys)) | |
| if len(unexpected_keys) > 0: | |
| logger.info("Weights from pretrained model not used in {}: {}".format( | |
| model.__class__.__name__, unexpected_keys)) | |
| if len(error_msgs) > 0: | |
| raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( | |
| model.__class__.__name__, "\n\t".join(error_msgs))) | |
| if hasattr(model, 'tie_weights'): | |
| model.tie_weights() # make sure word embedding weights are still tied | |
| # Set model in evaluation mode to desactivate DropOut modules by default | |
| model.eval() | |
| if output_loading_info: | |
| loading_info = {"missing_keys": missing_keys, "unexpected_keys": unexpected_keys, "error_msgs": error_msgs} | |
| return model, loading_info | |
| return model | |
| class Conv1D(nn.Module): | |
| def __init__(self, nf, nx): | |
| """ Conv1D layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2) | |
| Basically works like a Linear layer but the weights are transposed | |
| """ | |
| super(Conv1D, self).__init__() | |
| self.nf = nf | |
| w = torch.empty(nx, nf) | |
| nn.init.normal_(w, std=0.02) | |
| self.weight = nn.Parameter(w) | |
| self.bias = nn.Parameter(torch.zeros(nf)) | |
| def forward(self, x): | |
| size_out = x.size()[:-1] + (self.nf,) | |
| x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight) | |
| x = x.view(*size_out) | |
| return x | |
| class PoolerStartLogits(nn.Module): | |
| """ Compute SQuAD start_logits from sequence hidden states. """ | |
| def __init__(self, config): | |
| super(PoolerStartLogits, self).__init__() | |
| self.dense = nn.Linear(config.hidden_size, 1) | |
| def forward(self, hidden_states, p_mask=None): | |
| """ Args: | |
| **p_mask**: (`optional`) ``torch.FloatTensor`` of shape `(batch_size, seq_len)` | |
| invalid position mask such as query and special symbols (PAD, SEP, CLS) | |
| 1.0 means token should be masked. | |
| """ | |
| x = self.dense(hidden_states).squeeze(-1) | |
| if p_mask is not None: | |
| if next(self.parameters()).dtype == torch.float16: | |
| x = x * (1 - p_mask) - 65500 * p_mask | |
| else: | |
| x = x * (1 - p_mask) - 1e30 * p_mask | |
| return x | |
| class PoolerEndLogits(nn.Module): | |
| """ Compute SQuAD end_logits from sequence hidden states and start token hidden state. | |
| """ | |
| def __init__(self, config): | |
| super(PoolerEndLogits, self).__init__() | |
| self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) | |
| self.activation = nn.Tanh() | |
| self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.dense_1 = nn.Linear(config.hidden_size, 1) | |
| def forward(self, hidden_states, start_states=None, start_positions=None, p_mask=None): | |
| """ Args: | |
| One of ``start_states``, ``start_positions`` should be not None. | |
| If both are set, ``start_positions`` overrides ``start_states``. | |
| **start_states**: ``torch.LongTensor`` of shape identical to hidden_states | |
| hidden states of the first tokens for the labeled span. | |
| **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)`` | |
| position of the first token for the labeled span: | |
| **p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)`` | |
| Mask of invalid position such as query and special symbols (PAD, SEP, CLS) | |
| 1.0 means token should be masked. | |
| """ | |
| assert start_states is not None or start_positions is not None, "One of start_states, start_positions should be not None" | |
| if start_positions is not None: | |
| slen, hsz = hidden_states.shape[-2:] | |
| start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) | |
| start_states = hidden_states.gather(-2, start_positions) # shape (bsz, 1, hsz) | |
| start_states = start_states.expand(-1, slen, -1) # shape (bsz, slen, hsz) | |
| x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1)) | |
| x = self.activation(x) | |
| x = self.LayerNorm(x) | |
| x = self.dense_1(x).squeeze(-1) | |
| if p_mask is not None: | |
| x = x * (1 - p_mask) - 1e30 * p_mask | |
| return x | |
| class PoolerAnswerClass(nn.Module): | |
| """ Compute SQuAD 2.0 answer class from classification and start tokens hidden states. """ | |
| def __init__(self, config): | |
| super(PoolerAnswerClass, self).__init__() | |
| self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) | |
| self.activation = nn.Tanh() | |
| self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False) | |
| def forward(self, hidden_states, start_states=None, start_positions=None, cls_index=None): | |
| """ | |
| Args: | |
| One of ``start_states``, ``start_positions`` should be not None. | |
| If both are set, ``start_positions`` overrides ``start_states``. | |
| **start_states**: ``torch.LongTensor`` of shape identical to ``hidden_states``. | |
| hidden states of the first tokens for the labeled span. | |
| **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)`` | |
| position of the first token for the labeled span. | |
| **cls_index**: torch.LongTensor of shape ``(batch_size,)`` | |
| position of the CLS token. If None, take the last token. | |
| note(Original repo): | |
| no dependency on end_feature so that we can obtain one single `cls_logits` | |
| for each sample | |
| """ | |
| hsz = hidden_states.shape[-1] | |
| assert start_states is not None or start_positions is not None, "One of start_states, start_positions should be not None" | |
| if start_positions is not None: | |
| start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) | |
| start_states = hidden_states.gather(-2, start_positions).squeeze(-2) # shape (bsz, hsz) | |
| if cls_index is not None: | |
| cls_index = cls_index[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) | |
| cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, hsz) | |
| else: | |
| cls_token_state = hidden_states[:, -1, :] # shape (bsz, hsz) | |
| x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1)) | |
| x = self.activation(x) | |
| x = self.dense_1(x).squeeze(-1) | |
| return x | |
| class SQuADHead(nn.Module): | |
| r""" A SQuAD head inspired by XLNet. | |
| Parameters: | |
| config (:class:`~pytorch_transformers.XLNetConfig`): Model configuration class with all the parameters of the model. | |
| Inputs: | |
| **hidden_states**: ``torch.FloatTensor`` of shape ``(batch_size, seq_len, hidden_size)`` | |
| hidden states of sequence tokens | |
| **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)`` | |
| position of the first token for the labeled span. | |
| **end_positions**: ``torch.LongTensor`` of shape ``(batch_size,)`` | |
| position of the last token for the labeled span. | |
| **cls_index**: torch.LongTensor of shape ``(batch_size,)`` | |
| position of the CLS token. If None, take the last token. | |
| **is_impossible**: ``torch.LongTensor`` of shape ``(batch_size,)`` | |
| Whether the question has a possible answer in the paragraph or not. | |
| **p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)`` | |
| Mask of invalid position such as query and special symbols (PAD, SEP, CLS) | |
| 1.0 means token should be masked. | |
| Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
| **loss**: (`optional`, returned if both ``start_positions`` and ``end_positions`` are provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
| Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses. | |
| **start_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) | |
| ``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)`` | |
| Log probabilities for the top config.start_n_top start token possibilities (beam-search). | |
| **start_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) | |
| ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)`` | |
| Indices for the top config.start_n_top start token possibilities (beam-search). | |
| **end_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) | |
| ``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)`` | |
| Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search). | |
| **end_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) | |
| ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)`` | |
| Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search). | |
| **cls_logits**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided) | |
| ``torch.FloatTensor`` of shape ``(batch_size,)`` | |
| Log probabilities for the ``is_impossible`` label of the answers. | |
| """ | |
| def __init__(self, config): | |
| super(SQuADHead, self).__init__() | |
| self.start_n_top = config.start_n_top | |
| self.end_n_top = config.end_n_top | |
| self.start_logits = PoolerStartLogits(config) | |
| self.end_logits = PoolerEndLogits(config) | |
| self.answer_class = PoolerAnswerClass(config) | |
| def forward(self, hidden_states, start_positions=None, end_positions=None, | |
| cls_index=None, is_impossible=None, p_mask=None): | |
| outputs = () | |
| start_logits = self.start_logits(hidden_states, p_mask=p_mask) | |
| if start_positions is not None and end_positions is not None: | |
| # If we are on multi-GPU, let's remove the dimension added by batch splitting | |
| for x in (start_positions, end_positions, cls_index, is_impossible): | |
| if x is not None and x.dim() > 1: | |
| x.squeeze_(-1) | |
| # during training, compute the end logits based on the ground truth of the start position | |
| end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask) | |
| loss_fct = CrossEntropyLoss() | |
| start_loss = loss_fct(start_logits, start_positions) | |
| end_loss = loss_fct(end_logits, end_positions) | |
| total_loss = (start_loss + end_loss) / 2 | |
| if cls_index is not None and is_impossible is not None: | |
| # Predict answerability from the representation of CLS and START | |
| cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index) | |
| loss_fct_cls = nn.BCEWithLogitsLoss() | |
| cls_loss = loss_fct_cls(cls_logits, is_impossible) | |
| # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss | |
| total_loss += cls_loss * 0.5 | |
| outputs = (total_loss,) + outputs | |
| else: | |
| # during inference, compute the end logits based on beam search | |
| bsz, slen, hsz = hidden_states.size() | |
| start_log_probs = F.softmax(start_logits, dim=-1) # shape (bsz, slen) | |
| start_top_log_probs, start_top_index = torch.topk(start_log_probs, self.start_n_top, dim=-1) # shape (bsz, start_n_top) | |
| start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz) | |
| start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz) | |
| start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz) | |
| hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(start_states) # shape (bsz, slen, start_n_top, hsz) | |
| p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None | |
| end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask) | |
| end_log_probs = F.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top) | |
| end_top_log_probs, end_top_index = torch.topk(end_log_probs, self.end_n_top, dim=1) # shape (bsz, end_n_top, start_n_top) | |
| end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top) | |
| end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top) | |
| start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs) | |
| cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index) | |
| outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) + outputs | |
| # return start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits | |
| # or (if labels are provided) (total_loss,) | |
| return outputs | |
| class SequenceSummary(nn.Module): | |
| r""" Compute a single vector summary of a sequence hidden states according to various possibilities: | |
| Args of the config class: | |
| summary_type: | |
| - 'last' => [default] take the last token hidden state (like XLNet) | |
| - 'first' => take the first token hidden state (like Bert) | |
| - 'mean' => take the mean of all tokens hidden states | |
| - 'cls_index' => supply a Tensor of classification token position (GPT/GPT-2) | |
| - 'attn' => Not implemented now, use multi-head attention | |
| summary_use_proj: Add a projection after the vector extraction | |
| summary_proj_to_labels: If True, the projection outputs to config.num_labels classes (otherwise to hidden_size). Default: False. | |
| summary_activation: 'tanh' => add a tanh activation to the output, Other => no activation. Default | |
| summary_first_dropout: Add a dropout before the projection and activation | |
| summary_last_dropout: Add a dropout after the projection and activation | |
| """ | |
| def __init__(self, config): | |
| super(SequenceSummary, self).__init__() | |
| self.summary_type = config.summary_type if hasattr(config, 'summary_use_proj') else 'last' | |
| if self.summary_type == 'attn': | |
| # We should use a standard multi-head attention module with absolute positional embedding for that. | |
| # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276 | |
| # We can probably just use the multi-head attention module of PyTorch >=1.1.0 | |
| raise NotImplementedError | |
| self.summary = Identity() | |
| if hasattr(config, 'summary_use_proj') and config.summary_use_proj: | |
| if hasattr(config, 'summary_proj_to_labels') and config.summary_proj_to_labels and config.num_labels > 0: | |
| num_classes = config.num_labels | |
| else: | |
| num_classes = config.hidden_size | |
| self.summary = nn.Linear(config.hidden_size, num_classes) | |
| self.activation = Identity() | |
| if hasattr(config, 'summary_activation') and config.summary_activation == 'tanh': | |
| self.activation = nn.Tanh() | |
| self.first_dropout = Identity() | |
| if hasattr(config, 'summary_first_dropout') and config.summary_first_dropout > 0: | |
| self.first_dropout = nn.Dropout(config.summary_first_dropout) | |
| self.last_dropout = Identity() | |
| if hasattr(config, 'summary_last_dropout') and config.summary_last_dropout > 0: | |
| self.last_dropout = nn.Dropout(config.summary_last_dropout) | |
| def forward(self, hidden_states, cls_index=None): | |
| """ hidden_states: float Tensor in shape [bsz, seq_len, hidden_size], the hidden-states of the last layer. | |
| cls_index: [optional] position of the classification token if summary_type == 'cls_index', | |
| shape (bsz,) or more generally (bsz, ...) where ... are optional leading dimensions of hidden_states. | |
| if summary_type == 'cls_index' and cls_index is None: | |
| we take the last token of the sequence as classification token | |
| """ | |
| if self.summary_type == 'last': | |
| output = hidden_states[:, -1] | |
| elif self.summary_type == 'first': | |
| output = hidden_states[:, 0] | |
| elif self.summary_type == 'mean': | |
| output = hidden_states.mean(dim=1) | |
| elif self.summary_type == 'cls_index': | |
| if cls_index is None: | |
| cls_index = torch.full_like(hidden_states[..., :1, :], hidden_states.shape[-2]-1, dtype=torch.long) | |
| else: | |
| cls_index = cls_index.unsqueeze(-1).unsqueeze(-1) | |
| cls_index = cls_index.expand((-1,) * (cls_index.dim()-1) + (hidden_states.size(-1),)) | |
| # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states | |
| output = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, XX, hidden_size) | |
| elif self.summary_type == 'attn': | |
| raise NotImplementedError | |
| output = self.first_dropout(output) | |
| output = self.summary(output) | |
| output = self.activation(output) | |
| output = self.last_dropout(output) | |
| return output | |
| def prune_linear_layer(layer, index, dim=0): | |
| """ Prune a linear layer (a model parameters) to keep only entries in index. | |
| Return the pruned layer as a new layer with requires_grad=True. | |
| Used to remove heads. | |
| """ | |
| index = index.to(layer.weight.device) | |
| W = layer.weight.index_select(dim, index).clone().detach() | |
| if layer.bias is not None: | |
| if dim == 1: | |
| b = layer.bias.clone().detach() | |
| else: | |
| b = layer.bias[index].clone().detach() | |
| new_size = list(layer.weight.size()) | |
| new_size[dim] = len(index) | |
| new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device) | |
| new_layer.weight.requires_grad = False | |
| new_layer.weight.copy_(W.contiguous()) | |
| new_layer.weight.requires_grad = True | |
| if layer.bias is not None: | |
| new_layer.bias.requires_grad = False | |
| new_layer.bias.copy_(b.contiguous()) | |
| new_layer.bias.requires_grad = True | |
| return new_layer | |
| def prune_conv1d_layer(layer, index, dim=1): | |
| """ Prune a Conv1D layer (a model parameters) to keep only entries in index. | |
| A Conv1D work as a Linear layer (see e.g. BERT) but the weights are transposed. | |
| Return the pruned layer as a new layer with requires_grad=True. | |
| Used to remove heads. | |
| """ | |
| index = index.to(layer.weight.device) | |
| W = layer.weight.index_select(dim, index).clone().detach() | |
| if dim == 0: | |
| b = layer.bias.clone().detach() | |
| else: | |
| b = layer.bias[index].clone().detach() | |
| new_size = list(layer.weight.size()) | |
| new_size[dim] = len(index) | |
| new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device) | |
| new_layer.weight.requires_grad = False | |
| new_layer.weight.copy_(W.contiguous()) | |
| new_layer.weight.requires_grad = True | |
| new_layer.bias.requires_grad = False | |
| new_layer.bias.copy_(b.contiguous()) | |
| new_layer.bias.requires_grad = True | |
| return new_layer | |
| def prune_layer(layer, index, dim=None): | |
| """ Prune a Conv1D or nn.Linear layer (a model parameters) to keep only entries in index. | |
| Return the pruned layer as a new layer with requires_grad=True. | |
| Used to remove heads. | |
| """ | |
| if isinstance(layer, nn.Linear): | |
| return prune_linear_layer(layer, index, dim=0 if dim is None else dim) | |
| elif isinstance(layer, Conv1D): | |
| return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim) | |
| else: | |
| raise ValueError("Can't prune layer of class {}".format(layer.__class__)) | |