Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
| # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """PyTorch BERT model. """ | |
| from __future__ import absolute_import, division, print_function, unicode_literals | |
| import json | |
| import logging | |
| import math | |
| import os | |
| import sys | |
| from io import open | |
| import pdb | |
| import torch | |
| from torch import nn | |
| from torch.nn import CrossEntropyLoss, MSELoss | |
| from .modeling_utils import PreTrainedModel, prune_linear_layer | |
| from .configuration_bert import BertConfig | |
| from .file_utils import add_start_docstrings | |
| logger = logging.getLogger(__name__) | |
| BERT_PRETRAINED_MODEL_ARCHIVE_MAP = { | |
| 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin", | |
| 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin", | |
| 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin", | |
| 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin", | |
| 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin", | |
| 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin", | |
| 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin", | |
| 'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin", | |
| 'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin", | |
| 'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin", | |
| 'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin", | |
| 'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin", | |
| 'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin", | |
| } | |
| def load_tf_weights_in_bert(model, config, tf_checkpoint_path): | |
| """ Load tf checkpoints in a pytorch model. | |
| """ | |
| try: | |
| import re | |
| import numpy as np | |
| import tensorflow as tf | |
| except ImportError: | |
| logger.error("Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | |
| "https://www.tensorflow.org/install/ for installation instructions.") | |
| raise | |
| tf_path = os.path.abspath(tf_checkpoint_path) | |
| logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) | |
| # Load weights from TF model | |
| init_vars = tf.train.list_variables(tf_path) | |
| names = [] | |
| arrays = [] | |
| for name, shape in init_vars: | |
| logger.info("Loading TF weight {} with shape {}".format(name, shape)) | |
| array = tf.train.load_variable(tf_path, name) | |
| names.append(name) | |
| arrays.append(array) | |
| for name, array in zip(names, arrays): | |
| name = name.split('/') | |
| # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v | |
| # which are not required for using pretrained model | |
| if any(n in ["adam_v", "adam_m", "global_step"] for n in name): | |
| logger.info("Skipping {}".format("/".join(name))) | |
| continue | |
| pointer = model | |
| for m_name in name: | |
| if re.fullmatch(r'[A-Za-z]+_\d+', m_name): | |
| l = re.split(r'_(\d+)', m_name) | |
| else: | |
| l = [m_name] | |
| if l[0] == 'kernel' or l[0] == 'gamma': | |
| pointer = getattr(pointer, 'weight') | |
| elif l[0] == 'output_bias' or l[0] == 'beta': | |
| pointer = getattr(pointer, 'bias') | |
| elif l[0] == 'output_weights': | |
| pointer = getattr(pointer, 'weight') | |
| elif l[0] == 'squad': | |
| pointer = getattr(pointer, 'classifier') | |
| else: | |
| try: | |
| pointer = getattr(pointer, l[0]) | |
| except AttributeError: | |
| logger.info("Skipping {}".format("/".join(name))) | |
| continue | |
| if len(l) >= 2: | |
| num = int(l[1]) | |
| pointer = pointer[num] | |
| if m_name[-11:] == '_embeddings': | |
| pointer = getattr(pointer, 'weight') | |
| elif m_name == 'kernel': | |
| array = np.transpose(array) | |
| try: | |
| assert pointer.shape == array.shape | |
| except AssertionError as e: | |
| e.args += (pointer.shape, array.shape) | |
| raise | |
| logger.info("Initialize PyTorch weight {}".format(name)) | |
| pointer.data = torch.from_numpy(array) | |
| return model | |
| def gelu(x): | |
| """Implementation of the gelu activation function. | |
| For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): | |
| 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) | |
| Also see https://arxiv.org/abs/1606.08415 | |
| """ | |
| return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) | |
| def swish(x): | |
| return x * torch.sigmoid(x) | |
| ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish} | |
| try: | |
| from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm | |
| except (ImportError, AttributeError) as e: | |
| logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .") | |
| BertLayerNorm = torch.nn.LayerNorm | |
| class BertEmbeddings(nn.Module): | |
| """Construct the embeddings from word, position and token_type embeddings. | |
| """ | |
| def __init__(self, config): | |
| super(BertEmbeddings, self).__init__() | |
| self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) | |
| self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) | |
| self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
| # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
| # any TensorFlow checkpoint file | |
| self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| def forward(self, input_ids, token_type_ids=None, position_ids=None): | |
| seq_length = input_ids.size(1) | |
| if position_ids is None: | |
| position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) | |
| position_ids = position_ids.unsqueeze(0).expand_as(input_ids) | |
| if token_type_ids is None: | |
| token_type_ids = torch.zeros_like(input_ids) | |
| words_embeddings = self.word_embeddings(input_ids) | |
| position_embeddings = self.position_embeddings(position_ids) | |
| token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
| embeddings = words_embeddings + position_embeddings + token_type_embeddings | |
| embeddings = self.LayerNorm(embeddings) | |
| embeddings = self.dropout(embeddings) | |
| return embeddings | |
| class BertSelfAttention(nn.Module): | |
| def __init__(self, config): | |
| super(BertSelfAttention, self).__init__() | |
| if config.hidden_size % config.num_attention_heads != 0: | |
| raise ValueError( | |
| "The hidden size (%d) is not a multiple of the number of attention " | |
| "heads (%d)" % (config.hidden_size, config.num_attention_heads)) | |
| self.output_attentions = config.output_attentions | |
| self.num_attention_heads = config.num_attention_heads | |
| self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
| self.all_head_size = self.num_attention_heads * self.attention_head_size | |
| self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
| def transpose_for_scores(self, x): | |
| new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
| x = x.view(*new_x_shape) | |
| return x.permute(0, 2, 1, 3) | |
| def forward(self, hidden_states, attention_mask, head_mask=None): | |
| mixed_query_layer = self.query(hidden_states) | |
| mixed_key_layer = self.key(hidden_states) | |
| mixed_value_layer = self.value(hidden_states) | |
| query_layer = self.transpose_for_scores(mixed_query_layer) | |
| key_layer = self.transpose_for_scores(mixed_key_layer) | |
| value_layer = self.transpose_for_scores(mixed_value_layer) | |
| # Take the dot product between "query" and "key" to get the raw attention scores. | |
| attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
| attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
| # Apply the attention mask is (precomputed for all layers in BertModel forward() function) | |
| attention_scores = attention_scores + attention_mask | |
| # Normalize the attention scores to probabilities. | |
| attention_probs = nn.Softmax(dim=-1)(attention_scores) | |
| # This is actually dropping out entire tokens to attend to, which might | |
| # seem a bit unusual, but is taken from the original Transformer paper. | |
| attention_probs = self.dropout(attention_probs) | |
| # Mask heads if we want to | |
| if head_mask is not None: | |
| attention_probs = attention_probs * head_mask | |
| context_layer = torch.matmul(attention_probs, value_layer) | |
| context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
| new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
| context_layer = context_layer.view(*new_context_layer_shape) | |
| outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,) | |
| return outputs | |
| class BertSelfOutput(nn.Module): | |
| def __init__(self, config): | |
| super(BertSelfOutput, self).__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
| self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| def forward(self, hidden_states, input_tensor): | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
| return hidden_states | |
| class BertAttention(nn.Module): | |
| def __init__(self, config): | |
| super(BertAttention, self).__init__() | |
| self.self = BertSelfAttention(config) | |
| self.output = BertSelfOutput(config) | |
| self.pruned_heads = set() | |
| def prune_heads(self, heads): | |
| if len(heads) == 0: | |
| return | |
| mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size) | |
| heads = set(heads) - self.pruned_heads # Convert to set and emove already pruned heads | |
| for head in heads: | |
| # Compute how many pruned heads are before the head and move the index accordingly | |
| head = head - sum(1 if h < head else 0 for h in self.pruned_heads) | |
| mask[head] = 0 | |
| mask = mask.view(-1).contiguous().eq(1) | |
| index = torch.arange(len(mask))[mask].long() | |
| # Prune linear layers | |
| self.self.query = prune_linear_layer(self.self.query, index) | |
| self.self.key = prune_linear_layer(self.self.key, index) | |
| self.self.value = prune_linear_layer(self.self.value, index) | |
| self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
| # Update hyper params and store pruned heads | |
| self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
| self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
| self.pruned_heads = self.pruned_heads.union(heads) | |
| def forward(self, input_tensor, attention_mask, head_mask=None): | |
| self_outputs = self.self(input_tensor, attention_mask, head_mask) | |
| attention_output = self.output(self_outputs[0], input_tensor) | |
| outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
| return outputs | |
| class BertIntermediate(nn.Module): | |
| def __init__(self, config): | |
| super(BertIntermediate, self).__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
| if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)): | |
| self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
| else: | |
| self.intermediate_act_fn = config.hidden_act | |
| def forward(self, hidden_states): | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.intermediate_act_fn(hidden_states) | |
| return hidden_states | |
| class BertOutput(nn.Module): | |
| def __init__(self, config): | |
| super(BertOutput, self).__init__() | |
| self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
| self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| def forward(self, hidden_states, input_tensor): | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
| return hidden_states | |
| class BertLayer(nn.Module): | |
| def __init__(self, config): | |
| super(BertLayer, self).__init__() | |
| self.attention = BertAttention(config) | |
| self.intermediate = BertIntermediate(config) | |
| self.output = BertOutput(config) | |
| def forward(self, hidden_states, attention_mask, head_mask=None): | |
| attention_outputs = self.attention(hidden_states, attention_mask, head_mask) | |
| attention_output = attention_outputs[0] | |
| intermediate_output = self.intermediate(attention_output) | |
| layer_output = self.output(intermediate_output, attention_output) | |
| outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them | |
| return outputs | |
| class BertEncoder(nn.Module): | |
| def __init__(self, config): | |
| super(BertEncoder, self).__init__() | |
| self.output_attentions = config.output_attentions | |
| self.output_hidden_states = config.output_hidden_states | |
| self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) | |
| def forward(self, hidden_states, attention_mask, head_mask=None): | |
| all_hidden_states = () | |
| all_attentions = () | |
| for i, layer_module in enumerate(self.layer): | |
| if self.output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i]) | |
| hidden_states = layer_outputs[0] | |
| if self.output_attentions: | |
| all_attentions = all_attentions + (layer_outputs[1],) | |
| # Add last layer | |
| if self.output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| outputs = (hidden_states,) | |
| if self.output_hidden_states: | |
| outputs = outputs + (all_hidden_states,) | |
| if self.output_attentions: | |
| outputs = outputs + (all_attentions,) | |
| return outputs # last-layer hidden state, (all hidden states), (all attentions) | |
| class BertPooler(nn.Module): | |
| def __init__(self, config): | |
| super(BertPooler, self).__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
| self.activation = nn.Tanh() | |
| def forward(self, hidden_states): | |
| # We "pool" the model by simply taking the hidden state corresponding | |
| # to the first token. | |
| first_token_tensor = hidden_states[:, 0] | |
| pooled_output = self.dense(first_token_tensor) | |
| pooled_output = self.activation(pooled_output) | |
| return pooled_output | |
| class BertPredictionHeadTransform(nn.Module): | |
| def __init__(self, config): | |
| super(BertPredictionHeadTransform, self).__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
| if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)): | |
| self.transform_act_fn = ACT2FN[config.hidden_act] | |
| else: | |
| self.transform_act_fn = config.hidden_act | |
| self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| def forward(self, hidden_states): | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.transform_act_fn(hidden_states) | |
| hidden_states = self.LayerNorm(hidden_states) | |
| return hidden_states | |
| class BertLMPredictionHead(nn.Module): | |
| def __init__(self, config): | |
| super(BertLMPredictionHead, self).__init__() | |
| self.transform = BertPredictionHeadTransform(config) | |
| # The output weights are the same as the input embeddings, but there is | |
| # an output-only bias for each token. | |
| self.decoder = nn.Linear(config.hidden_size, | |
| config.vocab_size, | |
| bias=False) | |
| self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
| def forward(self, hidden_states): | |
| hidden_states = self.transform(hidden_states) | |
| hidden_states = self.decoder(hidden_states) + self.bias | |
| return hidden_states | |
| class BertOnlyMLMHead(nn.Module): | |
| def __init__(self, config): | |
| super(BertOnlyMLMHead, self).__init__() | |
| self.predictions = BertLMPredictionHead(config) | |
| def forward(self, sequence_output): | |
| prediction_scores = self.predictions(sequence_output) | |
| return prediction_scores | |
| class BertOnlyNSPHead(nn.Module): | |
| def __init__(self, config): | |
| super(BertOnlyNSPHead, self).__init__() | |
| self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
| def forward(self, pooled_output): | |
| seq_relationship_score = self.seq_relationship(pooled_output) | |
| return seq_relationship_score | |
| class BertPreTrainingHeads(nn.Module): | |
| def __init__(self, config): | |
| super(BertPreTrainingHeads, self).__init__() | |
| self.predictions = BertLMPredictionHead(config) | |
| self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
| def forward(self, sequence_output, pooled_output): | |
| prediction_scores = self.predictions(sequence_output) | |
| seq_relationship_score = self.seq_relationship(pooled_output) | |
| return prediction_scores, seq_relationship_score | |
| class BertPreTrainedModel(PreTrainedModel): | |
| """ An abstract class to handle weights initialization and | |
| a simple interface for dowloading and loading pretrained models. | |
| """ | |
| config_class = BertConfig | |
| pretrained_model_archive_map = BERT_PRETRAINED_MODEL_ARCHIVE_MAP | |
| load_tf_weights = load_tf_weights_in_bert | |
| base_model_prefix = "bert" | |
| def _init_weights(self, module): | |
| """ Initialize the weights """ | |
| if isinstance(module, (nn.Linear, nn.Embedding)): | |
| # Slightly different from the TF version which uses truncated_normal for initialization | |
| # cf https://github.com/pytorch/pytorch/pull/5617 | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| elif isinstance(module, BertLayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| if isinstance(module, nn.Linear) and module.bias is not None: | |
| module.bias.data.zero_() | |
| BERT_START_DOCSTRING = r""" The BERT model was proposed in | |
| `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ | |
| by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It's a bidirectional transformer | |
| pre-trained using a combination of masked language modeling objective and next sentence prediction | |
| on a large corpus comprising the Toronto Book Corpus and Wikipedia. | |
| This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and | |
| refer to the PyTorch documentation for all matter related to general usage and behavior. | |
| .. _`BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`: | |
| https://arxiv.org/abs/1810.04805 | |
| .. _`torch.nn.Module`: | |
| https://pytorch.org/docs/stable/nn.html#module | |
| Parameters: | |
| config (:class:`~pytorch_transformers.BertConfig`): Model configuration class with all the parameters of the model. | |
| Initializing with a config file does not load the weights associated with the model, only the configuration. | |
| Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights. | |
| """ | |
| BERT_INPUTS_DOCSTRING = r""" | |
| Inputs: | |
| **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
| Indices of input sequence tokens in the vocabulary. | |
| To match pre-training, BERT input sequence should be formatted with [CLS] and [SEP] tokens as follows: | |
| (a) For sequence pairs: | |
| ``tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]`` | |
| ``token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1`` | |
| (b) For single sequences: | |
| ``tokens: [CLS] the dog is hairy . [SEP]`` | |
| ``token_type_ids: 0 0 0 0 0 0 0`` | |
| Bert is a model with absolute position embeddings so it's usually advised to pad the inputs on | |
| the right rather than the left. | |
| Indices can be obtained using :class:`pytorch_transformers.BertTokenizer`. | |
| See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and | |
| :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details. | |
| **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``: | |
| Mask to avoid performing attention on padding token indices. | |
| Mask values selected in ``[0, 1]``: | |
| ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. | |
| **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
| Segment token indices to indicate first and second portions of the inputs. | |
| Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` | |
| corresponds to a `sentence B` token | |
| (see `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details). | |
| **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
| Indices of positions of each input sequence tokens in the position embeddings. | |
| Selected in the range ``[0, config.max_position_embeddings - 1]``. | |
| **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: | |
| Mask to nullify selected heads of the self-attention modules. | |
| Mask values selected in ``[0, 1]``: | |
| ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. | |
| """ | |
| class BertModel(BertPreTrainedModel): | |
| r""" | |
| Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
| **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` | |
| Sequence of hidden-states at the output of the last layer of the model. | |
| **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)`` | |
| Last layer hidden-state of the first token of the sequence (classification token) | |
| further processed by a Linear layer and a Tanh activation function. The Linear | |
| layer weights are trained from the next sentence prediction (classification) | |
| objective during Bert pretraining. This output is usually *not* a good summary | |
| of the semantic content of the input, you're often better with averaging or pooling | |
| the sequence of hidden-states for the whole input sequence. | |
| **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
| list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
| of shape ``(batch_size, sequence_length, hidden_size)``: | |
| Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
| **attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
| list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
| Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
| Examples:: | |
| tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
| model = BertModel.from_pretrained('bert-base-uncased') | |
| input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
| outputs = model(input_ids) | |
| last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple | |
| """ | |
| def __init__(self, config): | |
| super(BertModel, self).__init__(config) | |
| self.embeddings = BertEmbeddings(config) | |
| self.encoder = BertEncoder(config) | |
| self.pooler = BertPooler(config) | |
| self.init_weights() | |
| def _resize_token_embeddings(self, new_num_tokens): | |
| old_embeddings = self.embeddings.word_embeddings | |
| new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) | |
| self.embeddings.word_embeddings = new_embeddings | |
| return self.embeddings.word_embeddings | |
| def _prune_heads(self, heads_to_prune): | |
| """ Prunes heads of the model. | |
| heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
| See base class PreTrainedModel | |
| """ | |
| for layer, heads in heads_to_prune.items(): | |
| self.encoder.layer[layer].attention.prune_heads(heads) | |
| def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None): | |
| if attention_mask is None: | |
| attention_mask = torch.ones_like(input_ids) | |
| if token_type_ids is None: | |
| token_type_ids = torch.zeros_like(input_ids) | |
| # We create a 3D attention mask from a 2D tensor mask. | |
| # Sizes are [batch_size, 1, 1, to_seq_length] | |
| # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
| # this attention mask is more simple than the triangular masking of causal attention | |
| # used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
| extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | |
| # Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
| # masked positions, this operation will create a tensor which is 0.0 for | |
| # positions we want to attend and -10000.0 for masked positions. | |
| # Since we are adding it to the raw scores before the softmax, this is | |
| # effectively the same as removing these entirely. | |
| extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility | |
| extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
| # Prepare head mask if needed | |
| # 1.0 in head_mask indicate we keep the head | |
| # attention_probs has shape bsz x n_heads x N x N | |
| # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
| # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
| if head_mask is not None: | |
| if head_mask.dim() == 1: | |
| head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
| head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) | |
| elif head_mask.dim() == 2: | |
| head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer | |
| head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility | |
| else: | |
| head_mask = [None] * self.config.num_hidden_layers | |
| embedding_output = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids) | |
| encoder_outputs = self.encoder(embedding_output, | |
| extended_attention_mask, | |
| head_mask=head_mask) | |
| sequence_output = encoder_outputs[0] | |
| pooled_output = self.pooler(sequence_output) | |
| outputs = (sequence_output, pooled_output,) + encoder_outputs[1:] # add hidden_states and attentions if they are here | |
| return outputs # sequence_output, pooled_output, (hidden_states), (attentions) | |
| class BertForLatentConnector(BertPreTrainedModel): | |
| r""" | |
| Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
| **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` | |
| Sequence of hidden-states at the output of the last layer of the model. | |
| **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)`` | |
| Last layer hidden-state of the first token of the sequence (classification token) | |
| further processed by a Linear layer and a Tanh activation function. The Linear | |
| layer weights are trained from the next sentence prediction (classification) | |
| objective during Bert pretraining. This output is usually *not* a good summary | |
| of the semantic content of the input, you're often better with averaging or pooling | |
| the sequence of hidden-states for the whole input sequence. | |
| **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
| list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
| of shape ``(batch_size, sequence_length, hidden_size)``: | |
| Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
| **attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
| list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
| Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
| Examples:: | |
| tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
| model = BertModel.from_pretrained('bert-base-uncased') | |
| input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
| outputs = model(input_ids) | |
| last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple | |
| """ | |
| def __init__(self, config, latent_size): | |
| super(BertForLatentConnector, self).__init__(config) | |
| self.embeddings = BertEmbeddings(config) | |
| self.encoder = BertEncoder(config) | |
| self.pooler = BertPooler(config) | |
| self.linear = nn.Linear(config.hidden_size, 2 * latent_size, bias=False) | |
| self.init_weights() | |
| def _resize_token_embeddings(self, new_num_tokens): | |
| old_embeddings = self.embeddings.word_embeddings | |
| new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) | |
| self.embeddings.word_embeddings = new_embeddings | |
| return self.embeddings.word_embeddings | |
| def _prune_heads(self, heads_to_prune): | |
| """ Prunes heads of the model. | |
| heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
| See base class PreTrainedModel | |
| """ | |
| for layer, heads in heads_to_prune.items(): | |
| self.encoder.layer[layer].attention.prune_heads(heads) | |
| def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None): | |
| if attention_mask is None: | |
| attention_mask = torch.ones_like(input_ids) | |
| if token_type_ids is None: | |
| token_type_ids = torch.zeros_like(input_ids) | |
| # We create a 3D attention mask from a 2D tensor mask. | |
| # Sizes are [batch_size, 1, 1, to_seq_length] | |
| # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
| # this attention mask is more simple than the triangular masking of causal attention | |
| # used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
| extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | |
| # Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
| # masked positions, this operation will create a tensor which is 0.0 for | |
| # positions we want to attend and -10000.0 for masked positions. | |
| # Since we are adding it to the raw scores before the softmax, this is | |
| # effectively the same as removing these entirely. | |
| extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility | |
| extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
| # Prepare head mask if needed | |
| # 1.0 in head_mask indicate we keep the head | |
| # attention_probs has shape bsz x n_heads x N x N | |
| # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
| # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
| if head_mask is not None: | |
| if head_mask.dim() == 1: | |
| head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
| head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) | |
| elif head_mask.dim() == 2: | |
| head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer | |
| head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility | |
| else: | |
| head_mask = [None] * self.config.num_hidden_layers | |
| embedding_output = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids) | |
| encoder_outputs = self.encoder(embedding_output, | |
| extended_attention_mask, | |
| head_mask=head_mask) | |
| sequence_output = encoder_outputs[0] | |
| pooled_output = self.pooler(sequence_output) | |
| outputs = (sequence_output, pooled_output,) + encoder_outputs[1:] # add hidden_states and attentions if they are here | |
| return outputs # sequence_output, pooled_output, (hidden_states), (attentions) | |
| class BertForPreTraining(BertPreTrainedModel): | |
| r""" | |
| **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
| Labels for computing the masked language modeling loss. | |
| Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) | |
| Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels | |
| in ``[0, ..., config.vocab_size]`` | |
| **next_sentence_label**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
| Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring) | |
| Indices should be in ``[0, 1]``. | |
| ``0`` indicates sequence B is a continuation of sequence A, | |
| ``1`` indicates sequence B is a random sequence. | |
| Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
| **loss**: (`optional`, returned when both ``masked_lm_labels`` and ``next_sentence_label`` are provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
| Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. | |
| **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` | |
| Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
| **seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)`` | |
| Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). | |
| **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
| list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
| of shape ``(batch_size, sequence_length, hidden_size)``: | |
| Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
| **attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
| list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
| Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
| Examples:: | |
| tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
| model = BertForPreTraining.from_pretrained('bert-base-uncased') | |
| input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
| outputs = model(input_ids) | |
| prediction_scores, seq_relationship_scores = outputs[:2] | |
| """ | |
| def __init__(self, config): | |
| super(BertForPreTraining, self).__init__(config) | |
| self.bert = BertModel(config) | |
| self.cls = BertPreTrainingHeads(config) | |
| self.init_weights() | |
| self.tie_weights() | |
| def tie_weights(self): | |
| """ Make sure we are sharing the input and output embeddings. | |
| Export to TorchScript can't handle parameter sharing so we are cloning them instead. | |
| """ | |
| self._tie_or_clone_weights(self.cls.predictions.decoder, | |
| self.bert.embeddings.word_embeddings) | |
| def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, | |
| masked_lm_labels=None, next_sentence_label=None): | |
| outputs = self.bert(input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask) | |
| sequence_output, pooled_output = outputs[:2] | |
| prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) | |
| outputs = (prediction_scores, seq_relationship_score,) + outputs[2:] # add hidden states and attention if they are here | |
| if masked_lm_labels is not None and next_sentence_label is not None: | |
| loss_fct = CrossEntropyLoss(ignore_index=-1) | |
| masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) | |
| next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) | |
| total_loss = masked_lm_loss + next_sentence_loss | |
| outputs = (total_loss,) + outputs | |
| return outputs # (loss), prediction_scores, seq_relationship_score, (hidden_states), (attentions) | |
| class BertForMaskedLM(BertPreTrainedModel): | |
| r""" | |
| **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
| Labels for computing the masked language modeling loss. | |
| Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) | |
| Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels | |
| in ``[0, ..., config.vocab_size]`` | |
| Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
| **loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
| Masked language modeling loss. | |
| **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` | |
| Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
| **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
| list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
| of shape ``(batch_size, sequence_length, hidden_size)``: | |
| Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
| **attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
| list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
| Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
| Examples:: | |
| tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
| model = BertForMaskedLM.from_pretrained('bert-base-uncased') | |
| input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
| outputs = model(input_ids, masked_lm_labels=input_ids) | |
| loss, prediction_scores = outputs[:2] | |
| """ | |
| def __init__(self, config): | |
| super(BertForMaskedLM, self).__init__(config) | |
| self.bert = BertModel(config) | |
| self.cls = BertOnlyMLMHead(config) | |
| self.init_weights() | |
| self.tie_weights() | |
| def tie_weights(self): | |
| """ Make sure we are sharing the input and output embeddings. | |
| Export to TorchScript can't handle parameter sharing so we are cloning them instead. | |
| """ | |
| self._tie_or_clone_weights(self.cls.predictions.decoder, | |
| self.bert.embeddings.word_embeddings) | |
| def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, | |
| masked_lm_labels=None): | |
| outputs = self.bert(input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask) | |
| sequence_output = outputs[0] | |
| prediction_scores = self.cls(sequence_output) | |
| outputs = (prediction_scores,) + outputs[2:] # Add hidden states and attention if they are here | |
| if masked_lm_labels is not None: | |
| loss_fct = CrossEntropyLoss(ignore_index=-1) | |
| masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) | |
| outputs = (masked_lm_loss,) + outputs | |
| return outputs # (masked_lm_loss), prediction_scores, (hidden_states), (attentions) | |
| class BertForNextSentencePrediction(BertPreTrainedModel): | |
| r""" | |
| **next_sentence_label**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
| Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring) | |
| Indices should be in ``[0, 1]``. | |
| ``0`` indicates sequence B is a continuation of sequence A, | |
| ``1`` indicates sequence B is a random sequence. | |
| Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
| **loss**: (`optional`, returned when ``next_sentence_label`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
| Next sequence prediction (classification) loss. | |
| **seq_relationship_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, 2)`` | |
| Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). | |
| **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
| list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
| of shape ``(batch_size, sequence_length, hidden_size)``: | |
| Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
| **attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
| list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
| Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
| Examples:: | |
| tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
| model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased') | |
| input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
| outputs = model(input_ids) | |
| seq_relationship_scores = outputs[0] | |
| """ | |
| def __init__(self, config): | |
| super(BertForNextSentencePrediction, self).__init__(config) | |
| self.bert = BertModel(config) | |
| self.cls = BertOnlyNSPHead(config) | |
| self.init_weights() | |
| def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, | |
| next_sentence_label=None): | |
| outputs = self.bert(input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask) | |
| pooled_output = outputs[1] | |
| seq_relationship_score = self.cls(pooled_output) | |
| outputs = (seq_relationship_score,) + outputs[2:] # add hidden states and attention if they are here | |
| if next_sentence_label is not None: | |
| loss_fct = CrossEntropyLoss(ignore_index=-1) | |
| next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) | |
| outputs = (next_sentence_loss,) + outputs | |
| return outputs # (next_sentence_loss), seq_relationship_score, (hidden_states), (attentions) | |
| class BertForSequenceClassification(BertPreTrainedModel): | |
| r""" | |
| **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
| Labels for computing the sequence classification/regression loss. | |
| Indices should be in ``[0, ..., config.num_labels - 1]``. | |
| If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), | |
| If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). | |
| Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
| **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
| Classification (or regression if config.num_labels==1) loss. | |
| **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)`` | |
| Classification (or regression if config.num_labels==1) scores (before SoftMax). | |
| **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
| list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
| of shape ``(batch_size, sequence_length, hidden_size)``: | |
| Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
| **attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
| list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
| Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
| Examples:: | |
| tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
| model = BertForSequenceClassification.from_pretrained('bert-base-uncased') | |
| input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
| labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 | |
| outputs = model(input_ids, labels=labels) | |
| loss, logits = outputs[:2] | |
| """ | |
| def __init__(self, config): | |
| super(BertForSequenceClassification, self).__init__(config) | |
| self.num_labels = config.num_labels | |
| self.bert = BertModel(config) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) | |
| self.use_freeze = False | |
| self.init_weights() | |
| def forward(self, input_ids, attention_mask=None, token_type_ids=None, | |
| position_ids=None, head_mask=None, labels=None): | |
| outputs = self.bert(input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask) | |
| pooled_output = outputs[1] | |
| if self.use_freeze: | |
| pooled_output = pooled_output.detach() | |
| pooled_output = self.dropout(pooled_output) | |
| logits = self.classifier(pooled_output) | |
| outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here | |
| if labels is not None: | |
| if self.num_labels == 1: | |
| # We are doing regression | |
| loss_fct = MSELoss() | |
| loss = loss_fct(logits.view(-1), labels.view(-1)) | |
| else: | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
| outputs = (loss,) + outputs | |
| # pdb.set_trace() | |
| return outputs, pooled_output # (loss), logits, (hidden_states), (attentions) | |
| class BertForSequenceClassificationLatentConnector(BertPreTrainedModel): | |
| r""" | |
| **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
| Labels for computing the sequence classification/regression loss. | |
| Indices should be in ``[0, ..., config.num_labels - 1]``. | |
| If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), | |
| If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). | |
| Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
| **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
| Classification (or regression if config.num_labels==1) loss. | |
| **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)`` | |
| Classification (or regression if config.num_labels==1) scores (before SoftMax). | |
| **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
| list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
| of shape ``(batch_size, sequence_length, hidden_size)``: | |
| Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
| **attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
| list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
| Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
| Examples:: | |
| tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
| model = BertForSequenceClassificationLatentConnector.from_pretrained('bert-base-uncased') | |
| input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
| labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 | |
| outputs = model(input_ids, labels=labels) | |
| loss, logits = outputs[:2] | |
| """ | |
| def __init__(self, config, latent_size): | |
| super(BertForSequenceClassificationLatentConnector, self).__init__(config) | |
| self.num_labels = config.num_labels | |
| self.bert = BertModel(config) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) | |
| self.linear = nn.Linear(config.hidden_size, 2 * latent_size, bias=False) | |
| self.use_freeze = False | |
| self.init_weights() | |
| def forward(self, input_ids, attention_mask=None, token_type_ids=None, | |
| position_ids=None, head_mask=None, labels=None): | |
| outputs = self.bert(input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask) | |
| pooled_output = outputs[1] | |
| # mean, logvar = self.linear(pooled_output).chunk(2, -1) | |
| if self.use_freeze: | |
| pooled_output = pooled_output.detach() | |
| pooled_output = self.dropout(pooled_output) | |
| logits = self.classifier(pooled_output) | |
| outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here | |
| if labels is not None: | |
| if self.num_labels == 1: | |
| # We are doing regression | |
| loss_fct = MSELoss() | |
| loss = loss_fct(logits.view(-1), labels.view(-1)) | |
| else: | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
| outputs = (loss,) + outputs | |
| return outputs, pooled_output # (loss), logits, (hidden_states), (attentions) | |
| class BertForMultipleChoice(BertPreTrainedModel): | |
| r""" | |
| **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
| Labels for computing the multiple choice classification loss. | |
| Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension | |
| of the input tensors. (see `input_ids` above) | |
| Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
| **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
| Classification loss. | |
| **classification_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` where `num_choices` is the size of the second dimension | |
| of the input tensors. (see `input_ids` above). | |
| Classification scores (before SoftMax). | |
| **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
| list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
| of shape ``(batch_size, sequence_length, hidden_size)``: | |
| Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
| **attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
| list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
| Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
| Examples:: | |
| tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
| model = BertForMultipleChoice.from_pretrained('bert-base-uncased') | |
| choices = ["Hello, my dog is cute", "Hello, my cat is amazing"] | |
| input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices | |
| labels = torch.tensor(1).unsqueeze(0) # Batch size 1 | |
| outputs = model(input_ids, labels=labels) | |
| loss, classification_scores = outputs[:2] | |
| """ | |
| def __init__(self, config): | |
| super(BertForMultipleChoice, self).__init__(config) | |
| self.bert = BertModel(config) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| self.classifier = nn.Linear(config.hidden_size, 1) | |
| self.init_weights() | |
| def forward(self, input_ids, attention_mask=None, token_type_ids=None, | |
| position_ids=None, head_mask=None, labels=None): | |
| num_choices = input_ids.shape[1] | |
| input_ids = input_ids.view(-1, input_ids.size(-1)) | |
| attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | |
| token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
| position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None | |
| outputs = self.bert(input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask) | |
| pooled_output = outputs[1] | |
| pooled_output = self.dropout(pooled_output) | |
| logits = self.classifier(pooled_output) | |
| reshaped_logits = logits.view(-1, num_choices) | |
| outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(reshaped_logits, labels) | |
| outputs = (loss,) + outputs | |
| return outputs # (loss), reshaped_logits, (hidden_states), (attentions) | |
| class BertForTokenClassification(BertPreTrainedModel): | |
| r""" | |
| **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
| Labels for computing the token classification loss. | |
| Indices should be in ``[0, ..., config.num_labels - 1]``. | |
| Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
| **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
| Classification loss. | |
| **scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.num_labels)`` | |
| Classification scores (before SoftMax). | |
| **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
| list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
| of shape ``(batch_size, sequence_length, hidden_size)``: | |
| Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
| **attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
| list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
| Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
| Examples:: | |
| tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
| model = BertForTokenClassification.from_pretrained('bert-base-uncased') | |
| input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
| labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1 | |
| outputs = model(input_ids, labels=labels) | |
| loss, scores = outputs[:2] | |
| """ | |
| def __init__(self, config): | |
| super(BertForTokenClassification, self).__init__(config) | |
| self.num_labels = config.num_labels | |
| self.bert = BertModel(config) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
| self.init_weights() | |
| def forward(self, input_ids, attention_mask=None, token_type_ids=None, | |
| position_ids=None, head_mask=None, labels=None): | |
| outputs = self.bert(input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask) | |
| sequence_output = outputs[0] | |
| sequence_output = self.dropout(sequence_output) | |
| logits = self.classifier(sequence_output) | |
| outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss() | |
| # Only keep active parts of the loss | |
| if attention_mask is not None: | |
| active_loss = attention_mask.view(-1) == 1 | |
| active_logits = logits.view(-1, self.num_labels)[active_loss] | |
| active_labels = labels.view(-1)[active_loss] | |
| loss = loss_fct(active_logits, active_labels) | |
| else: | |
| loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
| outputs = (loss,) + outputs | |
| return outputs # (loss), scores, (hidden_states), (attentions) | |
| class BertForQuestionAnswering(BertPreTrainedModel): | |
| r""" | |
| **start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
| Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
| Positions are clamped to the length of the sequence (`sequence_length`). | |
| Position outside of the sequence are not taken into account for computing the loss. | |
| **end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: | |
| Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
| Positions are clamped to the length of the sequence (`sequence_length`). | |
| Position outside of the sequence are not taken into account for computing the loss. | |
| Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
| **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
| Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. | |
| **start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` | |
| Span-start scores (before SoftMax). | |
| **end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)`` | |
| Span-end scores (before SoftMax). | |
| **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
| list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
| of shape ``(batch_size, sequence_length, hidden_size)``: | |
| Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
| **attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
| list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
| Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
| Examples:: | |
| tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
| model = BertForQuestionAnswering.from_pretrained('bert-base-uncased') | |
| input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
| start_positions = torch.tensor([1]) | |
| end_positions = torch.tensor([3]) | |
| outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) | |
| loss, start_scores, end_scores = outputs[:2] | |
| """ | |
| def __init__(self, config): | |
| super(BertForQuestionAnswering, self).__init__(config) | |
| self.num_labels = config.num_labels | |
| self.bert = BertModel(config) | |
| self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
| self.init_weights() | |
| def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, | |
| start_positions=None, end_positions=None): | |
| outputs = self.bert(input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask) | |
| sequence_output = outputs[0] | |
| logits = self.qa_outputs(sequence_output) | |
| start_logits, end_logits = logits.split(1, dim=-1) | |
| start_logits = start_logits.squeeze(-1) | |
| end_logits = end_logits.squeeze(-1) | |
| outputs = (start_logits, end_logits,) + outputs[2:] | |
| if start_positions is not None and end_positions is not None: | |
| # If we are on multi-GPU, split add a dimension | |
| if len(start_positions.size()) > 1: | |
| start_positions = start_positions.squeeze(-1) | |
| if len(end_positions.size()) > 1: | |
| end_positions = end_positions.squeeze(-1) | |
| # sometimes the start/end positions are outside our model inputs, we ignore these terms | |
| ignored_index = start_logits.size(1) | |
| start_positions.clamp_(0, ignored_index) | |
| end_positions.clamp_(0, ignored_index) | |
| loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
| start_loss = loss_fct(start_logits, start_positions) | |
| end_loss = loss_fct(end_logits, end_positions) | |
| total_loss = (start_loss + end_loss) / 2 | |
| outputs = (total_loss,) + outputs | |
| return outputs # (loss), start_logits, end_logits, (hidden_states), (attentions) | |
| ############ | |
| # XX Added # | |
| ############ | |
| class BertForLatentConnector_XX(nn.Module): | |
| def __init__(self, config, latent_size): | |
| super().__init__() | |
| self.config = config | |
| self.embeddings = BertEmbeddings(config) | |
| self.encoder = BertEncoder(config) | |
| self.pooler = BertPooler(config) | |
| self.linear = nn.Linear(config.hidden_size, 2 * latent_size, bias=False) | |
| self.init_weights() | |
| def init_weights(self): | |
| """ Initialize and prunes weights if needed. """ | |
| # Initialize weights | |
| self.apply(self._init_weights) | |
| # Prune heads if needed | |
| if self.config.pruned_heads: | |
| self.prune_heads(self.config.pruned_heads) | |
| def _init_weights(self, module): | |
| """ Initialize the weights """ | |
| if isinstance(module, (nn.Linear, nn.Embedding)): | |
| # Slightly different from the TF version which uses truncated_normal for initialization | |
| # cf https://github.com/pytorch/pytorch/pull/5617 | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| elif isinstance(module, BertLayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| if isinstance(module, nn.Linear) and module.bias is not None: | |
| module.bias.data.zero_() | |
| def _resize_token_embeddings(self, new_num_tokens): | |
| old_embeddings = self.embeddings.word_embeddings | |
| new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) | |
| self.embeddings.word_embeddings = new_embeddings | |
| return self.embeddings.word_embeddings | |
| def _prune_heads(self, heads_to_prune): | |
| """ Prunes heads of the model. | |
| heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
| See base class PreTrainedModel | |
| """ | |
| for layer, heads in heads_to_prune.items(): | |
| self.encoder.layer[layer].attention.prune_heads(heads) | |
| def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None): | |
| if attention_mask is None: | |
| attention_mask = torch.ones_like(input_ids) | |
| if token_type_ids is None: | |
| token_type_ids = torch.zeros_like(input_ids) | |
| # We create a 3D attention mask from a 2D tensor mask. | |
| # Sizes are [batch_size, 1, 1, to_seq_length] | |
| # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
| # this attention mask is more simple than the triangular masking of causal attention | |
| # used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
| extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | |
| # Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
| # masked positions, this operation will create a tensor which is 0.0 for | |
| # positions we want to attend and -10000.0 for masked positions. | |
| # Since we are adding it to the raw scores before the softmax, this is | |
| # effectively the same as removing these entirely. | |
| extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility | |
| extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
| # Prepare head mask if needed | |
| # 1.0 in head_mask indicate we keep the head | |
| # attention_probs has shape bsz x n_heads x N x N | |
| # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
| # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
| if head_mask is not None: | |
| if head_mask.dim() == 1: | |
| head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
| head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) | |
| elif head_mask.dim() == 2: | |
| head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer | |
| head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility | |
| else: | |
| head_mask = [None] * self.config.num_hidden_layers | |
| embedding_output = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids) | |
| encoder_outputs = self.encoder(embedding_output, | |
| extended_attention_mask, | |
| head_mask=head_mask) | |
| sequence_output = encoder_outputs[0] | |
| pooled_output = self.pooler(sequence_output) | |
| outputs = (sequence_output, pooled_output,) + encoder_outputs[1:] # add hidden_states and attentions if they are here | |
| return outputs # sequence_output, pooled_output, (hidden_states), (attentions) | |