Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Tokenization classes for OpenAI GPT.""" | |
| from __future__ import (absolute_import, division, print_function, | |
| unicode_literals) | |
| import sys | |
| import json | |
| import logging | |
| import os | |
| import regex as re | |
| from io import open | |
| try: | |
| from functools import lru_cache | |
| except ImportError: | |
| # Just a dummy decorator to get the checks to run on python2 | |
| # because honestly I don't want to support a byte-level unicode BPE tokenizer on python 2 right now. | |
| def lru_cache(): | |
| return lambda func: func | |
| from .tokenization_utils import PreTrainedTokenizer | |
| logger = logging.getLogger(__name__) | |
| VOCAB_FILES_NAMES = { | |
| 'vocab_file': 'vocab.json', | |
| 'merges_file': 'merges.txt', | |
| } | |
| PRETRAINED_VOCAB_FILES_MAP = { | |
| 'vocab_file': | |
| { | |
| 'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json", | |
| 'gpt2-medium': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-vocab.json", | |
| 'gpt2-large': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-vocab.json", | |
| }, | |
| 'merges_file': | |
| { | |
| 'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt", | |
| 'gpt2-medium': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-merges.txt", | |
| 'gpt2-large': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-merges.txt", | |
| }, | |
| } | |
| PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
| 'gpt2': 1024, | |
| 'gpt2-medium': 1024, | |
| 'gpt2-large': 1024, | |
| } | |
| def bytes_to_unicode(): | |
| """ | |
| Returns list of utf-8 byte and a mapping to unicode strings. | |
| We specifically avoids mapping to whitespace/control characters the bpe code barfs on. | |
| The reversible bpe codes work on unicode strings. | |
| This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. | |
| When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. | |
| This is a signficant percentage of your normal, say, 32K bpe vocab. | |
| To avoid that, we want lookup tables between utf-8 bytes and unicode strings. | |
| """ | |
| _chr = unichr if sys.version_info[0] == 2 else chr | |
| bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) | |
| cs = bs[:] | |
| n = 0 | |
| for b in range(2**8): | |
| if b not in bs: | |
| bs.append(b) | |
| cs.append(2**8+n) | |
| n += 1 | |
| cs = [_chr(n) for n in cs] | |
| return dict(zip(bs, cs)) | |
| def get_pairs(word): | |
| """Return set of symbol pairs in a word. | |
| Word is represented as tuple of symbols (symbols being variable-length strings). | |
| """ | |
| pairs = set() | |
| prev_char = word[0] | |
| for char in word[1:]: | |
| pairs.add((prev_char, char)) | |
| prev_char = char | |
| return pairs | |
| class GPT2Tokenizer(PreTrainedTokenizer): | |
| """ | |
| GPT-2 BPE tokenizer. Peculiarities: | |
| - Byte-level Byte-Pair-Encoding | |
| - Requires a space to start the input string => will add a space is there isn't. | |
| As a consequence, this tokenizer `encode` and `decode` method will not conserve | |
| the absence of a space at the beginning of a string: `tokenizer.decode(tokenizer.encode("Hello")) = " Hello" | |
| """ | |
| vocab_files_names = VOCAB_FILES_NAMES | |
| pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
| max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
| def __init__(self, vocab_file, merges_file, errors='replace', unk_token="<|endoftext|>", | |
| bos_token="<|endoftext|>", eos_token="<|endoftext|>", **kwargs): | |
| super(GPT2Tokenizer, self).__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs) | |
| self.max_len_single_sentence = self.max_len # no default special tokens - you can update this value if you add special tokens | |
| self.max_len_sentences_pair = self.max_len # no default special tokens - you can update this value if you add special tokens | |
| self.encoder = json.load(open(vocab_file, encoding="utf-8")) | |
| self.decoder = {v: k for k, v in self.encoder.items()} | |
| self.errors = errors # how to handle errors in decoding | |
| self.byte_encoder = bytes_to_unicode() | |
| self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} | |
| bpe_data = open(merges_file, encoding='utf-8').read().split('\n')[1:-1] | |
| bpe_merges = [tuple(merge.split()) for merge in bpe_data] | |
| self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) | |
| self.cache = {} | |
| # Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions | |
| self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") | |
| def vocab_size(self): | |
| return len(self.encoder) | |
| def bpe(self, token): | |
| if token in self.cache: | |
| return self.cache[token] | |
| word = tuple(token) | |
| pairs = get_pairs(word) | |
| if not pairs: | |
| return token | |
| while True: | |
| bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) | |
| if bigram not in self.bpe_ranks: | |
| break | |
| first, second = bigram | |
| new_word = [] | |
| i = 0 | |
| while i < len(word): | |
| try: | |
| j = word.index(first, i) | |
| new_word.extend(word[i:j]) | |
| i = j | |
| except: | |
| new_word.extend(word[i:]) | |
| break | |
| if word[i] == first and i < len(word)-1 and word[i+1] == second: | |
| new_word.append(first+second) | |
| i += 2 | |
| else: | |
| new_word.append(word[i]) | |
| i += 1 | |
| new_word = tuple(new_word) | |
| word = new_word | |
| if len(word) == 1: | |
| break | |
| else: | |
| pairs = get_pairs(word) | |
| word = ' '.join(word) | |
| self.cache[token] = word | |
| return word | |
| def _tokenize(self, text): | |
| """ Tokenize a string. """ | |
| text = ' ' + text # GPT-2 (and RoBERTa) tokenizers need at least one space to begin the sentence with. | |
| bpe_tokens = [] | |
| for token in re.findall(self.pat, text): | |
| if sys.version_info[0] == 2: | |
| token = ''.join(self.byte_encoder[ord(b)] for b in token) # Maps all our bytes to unicode strings, avoiding controle tokens of the BPE (spaces in our case) | |
| else: | |
| token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding controle tokens of the BPE (spaces in our case) | |
| bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(' ')) | |
| return bpe_tokens | |
| def _convert_token_to_id(self, token): | |
| """ Converts a token (str/unicode) in an id using the vocab. """ | |
| return self.encoder.get(token, self.encoder.get(self.unk_token)) | |
| def _convert_id_to_token(self, index): | |
| """Converts an index (integer) in a token (string/unicode) using the vocab.""" | |
| return self.decoder.get(index) | |
| def convert_tokens_to_string(self, tokens): | |
| """ Converts a sequence of tokens (string) in a single string. """ | |
| text = ''.join(tokens) | |
| text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors) | |
| return text | |
| def save_vocabulary(self, save_directory): | |
| """Save the tokenizer vocabulary and merge files to a directory.""" | |
| if not os.path.isdir(save_directory): | |
| logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) | |
| return | |
| vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file']) | |
| merge_file = os.path.join(save_directory, VOCAB_FILES_NAMES['merges_file']) | |
| with open(vocab_file, 'w', encoding='utf-8') as f: | |
| f.write(json.dumps(self.encoder, ensure_ascii=False)) | |
| index = 0 | |
| with open(merge_file, "w", encoding="utf-8") as writer: | |
| writer.write(u'#version: 0.2\n') | |
| for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): | |
| if index != token_index: | |
| logger.warning("Saving vocabulary to {}: BPE merge indices are not consecutive." | |
| " Please check that the tokenizer is not corrupted!".format(merge_file)) | |
| index = token_index | |
| writer.write(' '.join(bpe_tokens) + u'\n') | |
| index += 1 | |
| return vocab_file, merge_file | |
| # XX added | |
| def add_special_tokens_single_sentence(self, token_ids): | |
| return [self.added_tokens_encoder['<BOS>']] + token_ids + [self.added_tokens_encoder['<EOS>']] | |