Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import numpy as np | |
| import numpy.random as npr | |
| import copy | |
| from functools import partial | |
| from contextlib import contextmanager | |
| from lib.model_zoo.common.get_model import get_model, register | |
| from lib.log_service import print_log | |
| symbol = 'vd' | |
| from .diffusion_utils import \ | |
| count_params, extract_into_tensor, make_beta_schedule | |
| from .distributions import normal_kl, DiagonalGaussianDistribution | |
| from .autokl import AutoencoderKL | |
| from .ema import LitEma | |
| def highlight_print(info): | |
| print_log('') | |
| print_log(''.join(['#']*(len(info)+4))) | |
| print_log('# '+info+' #') | |
| print_log(''.join(['#']*(len(info)+4))) | |
| print_log('') | |
| class String_Reg_Buffer(nn.Module): | |
| def __init__(self, output_string): | |
| super().__init__() | |
| torch_string = torch.ByteTensor(list(bytes(output_string, 'utf8'))) | |
| self.register_buffer('output_string', torch_string) | |
| def forward(self, *args, **kwargs): | |
| list_str = self.output_string.tolist() | |
| output_string = bytes(list_str) | |
| output_string = output_string.decode() | |
| return output_string | |
| class VD_v2_0(nn.Module): | |
| def __init__(self, | |
| vae_cfg_list, | |
| ctx_cfg_list, | |
| diffuser_cfg_list, | |
| global_layer_ptr=None, | |
| parameterization="eps", | |
| timesteps=1000, | |
| use_ema=False, | |
| beta_schedule="linear", | |
| beta_linear_start=1e-4, | |
| beta_linear_end=2e-2, | |
| given_betas=None, | |
| cosine_s=8e-3, | |
| loss_type="l2", | |
| l_simple_weight=1., | |
| l_elbo_weight=0., | |
| v_posterior=0., | |
| learn_logvar=False, | |
| logvar_init=0, | |
| latent_scale_factor=None,): | |
| super().__init__() | |
| assert parameterization in ["eps", "x0"], \ | |
| 'currently only supporting "eps" and "x0"' | |
| self.parameterization = parameterization | |
| highlight_print("Running in {} mode".format(self.parameterization)) | |
| self.vae = self.get_model_list(vae_cfg_list) | |
| self.ctx = self.get_model_list(ctx_cfg_list) | |
| self.diffuser = self.get_model_list(diffuser_cfg_list) | |
| self.global_layer_ptr = global_layer_ptr | |
| assert self.check_diffuser(), 'diffuser layers are not aligned!' | |
| self.use_ema = use_ema | |
| if self.use_ema: | |
| self.model_ema = LitEma(self.model) | |
| print_log(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") | |
| self.loss_type = loss_type | |
| self.l_simple_weight = l_simple_weight | |
| self.l_elbo_weight = l_elbo_weight | |
| self.v_posterior = v_posterior | |
| self.device = 'cpu' | |
| self.register_schedule( | |
| given_betas=given_betas, | |
| beta_schedule=beta_schedule, | |
| timesteps=timesteps, | |
| linear_start=beta_linear_start, | |
| linear_end=beta_linear_end, | |
| cosine_s=cosine_s) | |
| self.learn_logvar = learn_logvar | |
| self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) | |
| if self.learn_logvar: | |
| self.logvar = nn.Parameter(self.logvar, requires_grad=True) | |
| self.latent_scale_factor = {} if latent_scale_factor is None else latent_scale_factor | |
| self.parameter_group = {} | |
| for namei, diffuseri in self.diffuser.items(): | |
| self.parameter_group.update({ | |
| 'diffuser_{}_{}'.format(namei, pgni):pgi for pgni, pgi in diffuseri.parameter_group.items() | |
| }) | |
| def to(self, device): | |
| self.device = device | |
| super().to(device) | |
| def get_model_list(self, cfg_list): | |
| net = nn.ModuleDict() | |
| for name, cfg in cfg_list: | |
| if not isinstance(cfg, str): | |
| net[name] = get_model()(cfg) | |
| else: | |
| net[name] = String_Reg_Buffer(cfg) | |
| return net | |
| def register_schedule(self, | |
| given_betas=None, | |
| beta_schedule="linear", | |
| timesteps=1000, | |
| linear_start=1e-4, | |
| linear_end=2e-2, | |
| cosine_s=8e-3): | |
| if given_betas is not None: | |
| betas = given_betas | |
| else: | |
| betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, | |
| cosine_s=cosine_s) | |
| alphas = 1. - betas | |
| alphas_cumprod = np.cumprod(alphas, axis=0) | |
| alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) | |
| timesteps, = betas.shape | |
| self.num_timesteps = int(timesteps) | |
| self.linear_start = linear_start | |
| self.linear_end = linear_end | |
| assert alphas_cumprod.shape[0] == self.num_timesteps, \ | |
| 'alphas have to be defined for each timestep' | |
| to_torch = partial(torch.tensor, dtype=torch.float32) | |
| self.register_buffer('betas', to_torch(betas)) | |
| self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) | |
| self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) | |
| # calculations for diffusion q(x_t | x_{t-1}) and others | |
| self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) | |
| self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) | |
| self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) | |
| self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) | |
| self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) | |
| # calculations for posterior q(x_{t-1} | x_t, x_0) | |
| posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / ( | |
| 1. - alphas_cumprod) + self.v_posterior * betas | |
| # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) | |
| self.register_buffer('posterior_variance', to_torch(posterior_variance)) | |
| # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain | |
| self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) | |
| self.register_buffer('posterior_mean_coef1', to_torch( | |
| betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) | |
| self.register_buffer('posterior_mean_coef2', to_torch( | |
| (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) | |
| if self.parameterization == "eps": | |
| lvlb_weights = self.betas ** 2 / ( | |
| 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)) | |
| elif self.parameterization == "x0": | |
| lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod)) | |
| else: | |
| raise NotImplementedError("mu not supported") | |
| # TODO how to choose this term | |
| lvlb_weights[0] = lvlb_weights[1] | |
| self.register_buffer('lvlb_weights', lvlb_weights, persistent=False) | |
| assert not torch.isnan(self.lvlb_weights).all() | |
| def ema_scope(self, context=None): | |
| if self.use_ema: | |
| self.model_ema.store(self.model.parameters()) | |
| self.model_ema.copy_to(self.model) | |
| if context is not None: | |
| print_log(f"{context}: Switched to EMA weights") | |
| try: | |
| yield None | |
| finally: | |
| if self.use_ema: | |
| self.model_ema.restore(self.model.parameters()) | |
| if context is not None: | |
| print_log(f"{context}: Restored training weights") | |
| def q_mean_variance(self, x_start, t): | |
| """ | |
| Get the distribution q(x_t | x_0). | |
| :param x_start: the [N x C x ...] tensor of noiseless inputs. | |
| :param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
| :return: A tuple (mean, variance, log_variance), all of x_start's shape. | |
| """ | |
| mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start) | |
| variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) | |
| log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) | |
| return mean, variance, log_variance | |
| def predict_start_from_noise(self, x_t, t, noise): | |
| value1 = extract_into_tensor( | |
| self.sqrt_recip_alphas_cumprod, t, x_t.shape) | |
| value2 = extract_into_tensor( | |
| self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) | |
| return value1*x_t -value2*noise | |
| def q_sample(self, x_start, t, noise=None): | |
| noise = torch.randn_like(x_start) if noise is None else noise | |
| return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + | |
| extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) | |
| def get_loss(self, pred, target, mean=True): | |
| if self.loss_type == 'l1': | |
| loss = (target - pred).abs() | |
| if mean: | |
| loss = loss.mean() | |
| elif self.loss_type == 'l2': | |
| if mean: | |
| loss = torch.nn.functional.mse_loss(target, pred) | |
| else: | |
| loss = torch.nn.functional.mse_loss(target, pred, reduction='none') | |
| else: | |
| raise NotImplementedError("unknown loss type '{loss_type}'") | |
| return loss | |
| def forward(self, x_info, c_info): | |
| x = x_info['x'] | |
| t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() | |
| return self.p_losses(x_info, t, c_info) | |
| def p_losses(self, x_info, t, c_info, noise=None): | |
| x = x_info['x'] | |
| noise = torch.randn_like(x) if noise is None else noise | |
| x_noisy = self.q_sample(x_start=x, t=t, noise=noise) | |
| x_info['x'] = x_noisy | |
| model_output = self.apply_model(x_info, t, c_info) | |
| loss_dict = {} | |
| if self.parameterization == "x0": | |
| target = x | |
| elif self.parameterization == "eps": | |
| target = noise | |
| else: | |
| raise NotImplementedError() | |
| bs = model_output.shape[0] | |
| loss_simple = self.get_loss(model_output, target, mean=False).view(bs, -1).mean(-1) | |
| loss_dict['loss_simple'] = loss_simple.mean() | |
| logvar_t = self.logvar[t].to(self.device) | |
| loss = loss_simple / torch.exp(logvar_t) + logvar_t | |
| if self.learn_logvar: | |
| loss_dict['loss_gamma'] = loss.mean() | |
| loss_dict['logvar' ] = self.logvar.data.mean() | |
| loss = self.l_simple_weight * loss.mean() | |
| loss_vlb = self.get_loss(model_output, target, mean=False).view(bs, -1).mean(-1) | |
| loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() | |
| loss_dict['loss_vlb'] = loss_vlb | |
| loss_dict.update({'Loss': loss}) | |
| return loss, loss_dict | |
| def vae_encode(self, x, which, **kwargs): | |
| z = self.vae[which].encode(x, **kwargs) | |
| if self.latent_scale_factor is not None: | |
| if self.latent_scale_factor.get(which, None) is not None: | |
| scale = self.latent_scale_factor[which] | |
| return scale * z | |
| return z | |
| def vae_decode(self, z, which, **kwargs): | |
| if self.latent_scale_factor is not None: | |
| if self.latent_scale_factor.get(which, None) is not None: | |
| scale = self.latent_scale_factor[which] | |
| z = 1./scale * z | |
| x = self.vae[which].decode(z, **kwargs) | |
| return x | |
| def ctx_encode(self, x, which, **kwargs): | |
| if which.find('vae_') == 0: | |
| return self.vae[which[4:]].encode(x, **kwargs) | |
| else: | |
| return self.ctx[which].encode(x, **kwargs) | |
| def ctx_encode_trainable(self, x, which, **kwargs): | |
| if which.find('vae_') == 0: | |
| return self.vae[which[4:]].encode(x, **kwargs) | |
| else: | |
| return self.ctx[which].encode(x, **kwargs) | |
| def check_diffuser(self): | |
| for idx, (_, diffuseri) in enumerate(self.diffuser.items()): | |
| if idx==0: | |
| order = diffuseri.layer_order | |
| else: | |
| if not order == diffuseri.layer_order: | |
| return False | |
| return True | |
| def on_train_batch_start(self, x): | |
| pass | |
| def on_train_batch_end(self, *args, **kwargs): | |
| if self.use_ema: | |
| self.model_ema(self.model) | |
| def apply_model(self, x_info, timesteps, c_info): | |
| x_type, x = x_info['type'], x_info['x'] | |
| c_type, c = c_info['type'], c_info['c'] | |
| dtype = x.dtype | |
| hs = [] | |
| from .openaimodel import timestep_embedding | |
| glayer_ptr = x_type if self.global_layer_ptr is None else self.global_layer_ptr | |
| model_channels = self.diffuser[glayer_ptr].model_channels | |
| t_emb = timestep_embedding(timesteps, model_channels, repeat_only=False).to(dtype) | |
| emb = self.diffuser[glayer_ptr].time_embed(t_emb) | |
| d_iter = iter(self.diffuser[x_type].data_blocks) | |
| c_iter = iter(self.diffuser[c_type].context_blocks) | |
| i_order = self.diffuser[x_type].i_order | |
| m_order = self.diffuser[x_type].m_order | |
| o_order = self.diffuser[x_type].o_order | |
| h = x | |
| for ltype in i_order: | |
| if ltype == 'd': | |
| module = next(d_iter) | |
| h = module(h, emb, None) | |
| elif ltype == 'c': | |
| module = next(c_iter) | |
| h = module(h, emb, c) | |
| elif ltype == 'save_hidden_feature': | |
| hs.append(h) | |
| for ltype in m_order: | |
| if ltype == 'd': | |
| module = next(d_iter) | |
| h = module(h, emb, None) | |
| elif ltype == 'c': | |
| module = next(c_iter) | |
| h = module(h, emb, c) | |
| for ltype in o_order: | |
| if ltype == 'load_hidden_feature': | |
| h = torch.cat([h, hs.pop()], dim=1) | |
| elif ltype == 'd': | |
| module = next(d_iter) | |
| h = module(h, emb, None) | |
| elif ltype == 'c': | |
| module = next(c_iter) | |
| h = module(h, emb, c) | |
| o = h | |
| return o | |
| def context_mixing(self, x, emb, context_module_list, context_info_list, mixing_type): | |
| nm = len(context_module_list) | |
| nc = len(context_info_list) | |
| assert nm == nc | |
| context = [c_info['c'] for c_info in context_info_list] | |
| cratio = np.array([c_info['ratio'] for c_info in context_info_list]) | |
| cratio = cratio / cratio.sum() | |
| if mixing_type == 'attention': | |
| h = None | |
| for module, c, r in zip(context_module_list, context, cratio): | |
| hi = module(x, emb, c) * r | |
| h = h+hi if h is not None else hi | |
| return h | |
| elif mixing_type == 'layer': | |
| ni = npr.choice(nm, p=cratio) | |
| module = context_module_list[ni] | |
| c = context[ni] | |
| h = module(x, emb, c) | |
| return h | |
| def apply_model_multicontext(self, x_info, timesteps, c_info_list, mixing_type='attention'): | |
| ''' | |
| context_info_list: [[context_type, context, ratio]] for 'attention' | |
| ''' | |
| x_type, x = x_info['type'], x_info['x'] | |
| dtype = x.dtype | |
| hs = [] | |
| from .openaimodel import timestep_embedding | |
| model_channels = self.diffuser[x_type].model_channels | |
| t_emb = timestep_embedding(timesteps, model_channels, repeat_only=False).to(dtype) | |
| emb = self.diffuser[x_type].time_embed(t_emb) | |
| d_iter = iter(self.diffuser[x_type].data_blocks) | |
| c_iter_list = [iter(self.diffuser[c_info['type']].context_blocks) for c_info in c_info_list] | |
| i_order = self.diffuser[x_type].i_order | |
| m_order = self.diffuser[x_type].m_order | |
| o_order = self.diffuser[x_type].o_order | |
| h = x | |
| for ltype in i_order: | |
| if ltype == 'd': | |
| module = next(d_iter) | |
| h = module(h, emb, None) | |
| elif ltype == 'c': | |
| module_list = [next(c_iteri) for c_iteri in c_iter_list] | |
| h = self.context_mixing(h, emb, module_list, c_info_list, mixing_type) | |
| elif ltype == 'save_hidden_feature': | |
| hs.append(h) | |
| for ltype in m_order: | |
| if ltype == 'd': | |
| module = next(d_iter) | |
| h = module(h, emb, None) | |
| elif ltype == 'c': | |
| module_list = [next(c_iteri) for c_iteri in c_iter_list] | |
| h = self.context_mixing(h, emb, module_list, c_info_list, mixing_type) | |
| for ltype in o_order: | |
| if ltype == 'load_hidden_feature': | |
| h = torch.cat([h, hs.pop()], dim=1) | |
| elif ltype == 'd': | |
| module = next(d_iter) | |
| h = module(h, emb, None) | |
| elif ltype == 'c': | |
| module_list = [next(c_iteri) for c_iteri in c_iter_list] | |
| h = self.context_mixing(h, emb, module_list, c_info_list, mixing_type) | |
| o = h | |
| return o | |