Spaces:
Running
on
Zero
Running
on
Zero
| import argparse | |
| import torch | |
| import os | |
| import json | |
| from tqdm import tqdm | |
| import shortuuid | |
| from ola_vlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
| from ola_vlm.conversation import conv_templates, SeparatorStyle | |
| from ola_vlm.model.builder import load_pretrained_model | |
| from ola_vlm.utils import disable_torch_init | |
| from ola_vlm.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path | |
| from torch.utils.data import Dataset, DataLoader | |
| from datasets import load_dataset | |
| from PIL import Image | |
| import math | |
| def split_list(lst, n): | |
| """Split a list into n (roughly) equal-sized chunks""" | |
| chunk_size = math.ceil(len(lst) / n) # integer division | |
| return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] | |
| def get_chunk(lst, n, k): | |
| chunks = split_list(lst, n) | |
| return chunks[k] | |
| def prepare_MMStar(path): | |
| os.makedirs(f"{path}/images", exist_ok=True) | |
| dataset = load_dataset(path, "val") | |
| dataset = dataset["val"] | |
| data = [] | |
| for i in range(len(dataset)): | |
| if not os.path.exists(f"{path}/images/{i}.jpeg"): | |
| dataset[i]["image"].save(f"{path}/images/{i}.jpeg") | |
| prompt = dataset[i]["question"] + "\n" | |
| prompt += "Answer with the option's letter from the given choices directly, such as answer letter 'A' only. \n" | |
| d = { | |
| "image": f"{path}/images/{i}.jpeg", | |
| "question": prompt, | |
| "answer": dataset[i]["answer"], | |
| "category": dataset[i]["category"], | |
| "l2_category": dataset[i]["l2_category"] | |
| } | |
| data.append(d) | |
| return data | |
| # Custom dataset class | |
| class CustomDataset(Dataset): | |
| def __init__(self, data, tokenizer, image_processor, model_config): | |
| self.questions = data | |
| self.tokenizer = tokenizer | |
| self.image_processor = image_processor | |
| self.model_config = model_config | |
| def __getitem__(self, index): | |
| d = self.questions[index] | |
| qs = d["question"] | |
| image_file = d["image"] | |
| ans = d["answer"] | |
| if self.model_config.mm_use_im_start_end: | |
| qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs | |
| else: | |
| qs = DEFAULT_IMAGE_TOKEN + '\n' + qs | |
| conv = conv_templates[args.conv_mode].copy() | |
| conv.append_message(conv.roles[0], qs) | |
| conv.append_message(conv.roles[1], None) | |
| prompt = conv.get_prompt() | |
| image = Image.open(image_file).convert('RGB') | |
| image_tensor = process_images([image], self.image_processor, self.model_config)[0] | |
| input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt') | |
| return input_ids, image_tensor, image.size, ans, d["category"], d["l2_category"] | |
| def __len__(self): | |
| return len(self.questions) | |
| def collate_fn(batch): | |
| input_ids, image_tensors, image_sizes, answers, cats, cats_l2 = zip(*batch) | |
| input_ids = torch.stack(input_ids, dim=0) | |
| image_tensors = torch.stack(image_tensors, dim=0) | |
| return input_ids, image_tensors, image_sizes, answers, cats, cats_l2 | |
| # DataLoader | |
| def create_data_loader(questions, tokenizer, image_processor, model_config, batch_size=1, num_workers=4): | |
| assert batch_size == 1, "batch_size must be 1" | |
| dataset = CustomDataset(questions, tokenizer, image_processor, model_config) | |
| data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False, collate_fn=collate_fn) | |
| return data_loader | |
| def eval_model(args): | |
| # Model | |
| disable_torch_init() | |
| model_path = os.path.expanduser(args.model_path) | |
| model_name = get_model_name_from_path(model_path) | |
| tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name) | |
| questions = prepare_MMStar(args.path) | |
| questions = get_chunk(questions, args.num_chunks, args.chunk_idx) | |
| answers_file = os.path.expanduser(args.answers_file) | |
| os.makedirs(os.path.dirname(answers_file), exist_ok=True) | |
| ans_file = open(answers_file, "w") | |
| if 'plain' in model_name and 'finetune' not in model_name.lower() and 'mmtag' not in args.conv_mode: | |
| args.conv_mode = args.conv_mode + '_mmtag' | |
| print(f'It seems that this is a plain model, but it is not using a mmtag prompt, auto switching to {args.conv_mode}.') | |
| data_loader = create_data_loader(questions, tokenizer, image_processor, model.config) | |
| for (input_ids, image_tensor, image_sizes, answer, cat, cat_l2), line in tqdm(zip(data_loader, questions), total=len(questions)): | |
| input_ids = input_ids.to(device='cuda', non_blocking=True) | |
| with torch.inference_mode(): | |
| output_ids = model.generate( | |
| input_ids, | |
| images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True), | |
| image_sizes=image_sizes, | |
| do_sample=True if args.temperature > 0 else False, | |
| temperature=args.temperature, | |
| top_p=args.top_p, | |
| num_beams=args.num_beams, | |
| max_new_tokens=args.max_new_tokens, | |
| use_cache=True) | |
| if not isinstance(output_ids, torch.Tensor): | |
| output_ids = output_ids.sequences | |
| outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() | |
| ans_file.write(json.dumps({"prediction": outputs, | |
| "answer": answer[0], | |
| "question": line, | |
| "category": cat[0], | |
| "l2_category": cat_l2[0]}) + "\n") | |
| # ans_file.flush() | |
| ans_file.close() | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--model-path", type=str, default="facebook/opt-350m") | |
| parser.add_argument("--model-base", type=str, default=None) | |
| parser.add_argument("--path", type=str, default="MMStar") | |
| parser.add_argument("--answers-file", type=str, default="mmstar_answer.jsonl") | |
| parser.add_argument("--conv-mode", type=str, default="llava_phi_3") | |
| parser.add_argument("--num-chunks", type=int, default=1) | |
| parser.add_argument("--chunk-idx", type=int, default=0) | |
| parser.add_argument("--temperature", type=float, default=0.2) | |
| parser.add_argument("--top_p", type=float, default=None) | |
| parser.add_argument("--num_beams", type=int, default=1) | |
| parser.add_argument("--max_new_tokens", type=int, default=128) | |
| args = parser.parse_args() | |
| eval_model(args) | |