Spaces:
Running
on
Zero
Running
on
Zero
Jitesh Jain
commited on
Commit
·
f1653dd
1
Parent(s):
20b4d0d
:zap: Fix version
Browse files
app.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
-
import spaces
|
| 5 |
from ola_vlm.constants import DEFAULT_IMAGE_TOKEN
|
| 6 |
|
| 7 |
from ola_vlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
|
@@ -9,8 +8,7 @@ from ola_vlm.conversation import conv_templates, SeparatorStyle
|
|
| 9 |
from ola_vlm.model.builder import load_pretrained_model
|
| 10 |
from ola_vlm.mm_utils import tokenizer_image_token, get_model_name_from_path, process_images
|
| 11 |
|
| 12 |
-
from diffusers import StableUnCLIPImg2ImgPipeline
|
| 13 |
-
from diffusers import DPMSolverMultistepScheduler
|
| 14 |
from transformers import OneFormerProcessor
|
| 15 |
from ola_vlm.model.aux_heads.oneformer_head import OneFormerHead
|
| 16 |
from ola_vlm.ola_utils import visualize_oneformer_masks_on_image, oneformer_prepare_panoptic_instance_prediction
|
|
@@ -150,10 +148,9 @@ our_chatbot = None
|
|
| 150 |
|
| 151 |
pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(f"stabilityai/stable-diffusion-2-1-unclip", torch_dtype=torch.float16, variant="fp16")
|
| 152 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
| 153 |
-
pipe = pipe.to("cuda")
|
| 154 |
|
| 155 |
oneformer_processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_coco_swin_large")
|
| 156 |
-
oneformer = OneFormerHead.from_pretrained("shi-labs/oneformer_coco_swin_large")
|
| 157 |
|
| 158 |
gen_layer_indices = model.config.image_gen["img_layer_indices"].split("-")
|
| 159 |
seg_layer_indices = model.config.image_seg["seg_layer_indices"].split("-")
|
|
@@ -181,6 +178,7 @@ def add_text(state, imagebox, textbox, image_process_mode):
|
|
| 181 |
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
|
| 182 |
|
| 183 |
def get_gen_images(out):
|
|
|
|
| 184 |
img_embeds = out.image_embs
|
| 185 |
if len(img_embeds) == 0:
|
| 186 |
return None
|
|
@@ -213,6 +211,7 @@ def get_depth_images(out, org_size):
|
|
| 213 |
return grid_image
|
| 214 |
|
| 215 |
def get_seg_images(out, image):
|
|
|
|
| 216 |
seg_embs = out.seg_embs
|
| 217 |
|
| 218 |
if len(seg_embs) == 0:
|
|
@@ -252,7 +251,7 @@ def regenerate(state, image_process_mode):
|
|
| 252 |
# @spaces.GPU
|
| 253 |
# def get_interm_outs(state):
|
| 254 |
|
| 255 |
-
|
| 256 |
@spaces.GPU
|
| 257 |
def generate(state, temperature, top_p, max_output_tokens, is_inter=False):
|
| 258 |
if is_inter:
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
from ola_vlm.constants import DEFAULT_IMAGE_TOKEN
|
| 5 |
|
| 6 |
from ola_vlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
|
|
|
| 8 |
from ola_vlm.model.builder import load_pretrained_model
|
| 9 |
from ola_vlm.mm_utils import tokenizer_image_token, get_model_name_from_path, process_images
|
| 10 |
|
| 11 |
+
from diffusers import StableUnCLIPImg2ImgPipeline, DPMSolverMultistepScheduler
|
|
|
|
| 12 |
from transformers import OneFormerProcessor
|
| 13 |
from ola_vlm.model.aux_heads.oneformer_head import OneFormerHead
|
| 14 |
from ola_vlm.ola_utils import visualize_oneformer_masks_on_image, oneformer_prepare_panoptic_instance_prediction
|
|
|
|
| 148 |
|
| 149 |
pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(f"stabilityai/stable-diffusion-2-1-unclip", torch_dtype=torch.float16, variant="fp16")
|
| 150 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
|
|
|
| 151 |
|
| 152 |
oneformer_processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_coco_swin_large")
|
| 153 |
+
oneformer = OneFormerHead.from_pretrained("shi-labs/oneformer_coco_swin_large")
|
| 154 |
|
| 155 |
gen_layer_indices = model.config.image_gen["img_layer_indices"].split("-")
|
| 156 |
seg_layer_indices = model.config.image_seg["seg_layer_indices"].split("-")
|
|
|
|
| 178 |
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
|
| 179 |
|
| 180 |
def get_gen_images(out):
|
| 181 |
+
pipe = pipe.to("cuda")
|
| 182 |
img_embeds = out.image_embs
|
| 183 |
if len(img_embeds) == 0:
|
| 184 |
return None
|
|
|
|
| 211 |
return grid_image
|
| 212 |
|
| 213 |
def get_seg_images(out, image):
|
| 214 |
+
oneformer = oneformer.to("cuda")
|
| 215 |
seg_embs = out.seg_embs
|
| 216 |
|
| 217 |
if len(seg_embs) == 0:
|
|
|
|
| 251 |
# @spaces.GPU
|
| 252 |
# def get_interm_outs(state):
|
| 253 |
|
| 254 |
+
import spaces
|
| 255 |
@spaces.GPU
|
| 256 |
def generate(state, temperature, top_p, max_output_tokens, is_inter=False):
|
| 257 |
if is_inter:
|
demo.py
DELETED
|
@@ -1,486 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import os
|
| 3 |
-
import torch
|
| 4 |
-
import numpy as np
|
| 5 |
-
|
| 6 |
-
from ola_vlm.constants import DEFAULT_IMAGE_TOKEN
|
| 7 |
-
|
| 8 |
-
from ola_vlm.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
| 9 |
-
from ola_vlm.conversation import conv_templates, SeparatorStyle
|
| 10 |
-
from ola_vlm.model.builder import load_pretrained_model
|
| 11 |
-
from ola_vlm.mm_utils import tokenizer_image_token, get_model_name_from_path, process_images
|
| 12 |
-
|
| 13 |
-
from diffusers import StableUnCLIPImg2ImgPipeline
|
| 14 |
-
from diffusers import DPMSolverMultistepScheduler
|
| 15 |
-
from transformers import OneFormerProcessor
|
| 16 |
-
from ola_vlm.model.aux_heads.oneformer_head import OneFormerHead
|
| 17 |
-
from ola_vlm.ola_utils import visualize_oneformer_masks_on_image, oneformer_prepare_panoptic_instance_prediction
|
| 18 |
-
import matplotlib
|
| 19 |
-
from PIL import Image, ImageDraw, ImageFont
|
| 20 |
-
import argparse
|
| 21 |
-
import math
|
| 22 |
-
|
| 23 |
-
from transformers import TextIteratorStreamer
|
| 24 |
-
from threading import Thread
|
| 25 |
-
|
| 26 |
-
def make_grid(pil_images, layer_indices=None):
|
| 27 |
-
new_images = []
|
| 28 |
-
new_captions = []
|
| 29 |
-
|
| 30 |
-
# Resize images and prepare captions
|
| 31 |
-
for i, pil_image in enumerate(pil_images):
|
| 32 |
-
pil_image = pil_image.resize((256, 256))
|
| 33 |
-
new_images.append(pil_image)
|
| 34 |
-
if layer_indices is not None:
|
| 35 |
-
new_captions.append(f"Layer: {layer_indices[i]}")
|
| 36 |
-
else:
|
| 37 |
-
new_captions.append(f"Layer: {i+1}")
|
| 38 |
-
|
| 39 |
-
images = new_images
|
| 40 |
-
captions = new_captions
|
| 41 |
-
|
| 42 |
-
width, height = images[0].size
|
| 43 |
-
font_size = 18
|
| 44 |
-
|
| 45 |
-
# Calculate the number of rows and columns for the grid
|
| 46 |
-
images_per_row = min(len(images), 4) # Max 4 images per row
|
| 47 |
-
row_count = math.ceil(len(images) / images_per_row)
|
| 48 |
-
total_width = width * images_per_row
|
| 49 |
-
total_height = height * row_count
|
| 50 |
-
|
| 51 |
-
# Create a new blank image
|
| 52 |
-
new_image = Image.new("RGB", (total_width, total_height), "white")
|
| 53 |
-
draw = ImageDraw.Draw(new_image)
|
| 54 |
-
|
| 55 |
-
# Load a default font
|
| 56 |
-
try:
|
| 57 |
-
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", font_size)
|
| 58 |
-
except:
|
| 59 |
-
font = ImageFont.load_default()
|
| 60 |
-
|
| 61 |
-
# Place images and captions in the grid
|
| 62 |
-
for i, (image, caption) in enumerate(zip(images, captions)):
|
| 63 |
-
row = i // images_per_row
|
| 64 |
-
col = i % images_per_row
|
| 65 |
-
x_offset = col * width
|
| 66 |
-
y_offset = row * height
|
| 67 |
-
|
| 68 |
-
# Paste the image
|
| 69 |
-
new_image.paste(image, (x_offset, y_offset))
|
| 70 |
-
|
| 71 |
-
# Calculate text and background positions
|
| 72 |
-
text_width, text_height = draw.textsize(caption, font=font)
|
| 73 |
-
text_position = (x_offset + 10, y_offset + height - text_height - 10)
|
| 74 |
-
background_position = (
|
| 75 |
-
text_position[0] - 5,
|
| 76 |
-
text_position[1] - 5,
|
| 77 |
-
text_position[0] + text_width + 5,
|
| 78 |
-
text_position[1] + text_height + 5,
|
| 79 |
-
)
|
| 80 |
-
|
| 81 |
-
# Draw background rectangle and text
|
| 82 |
-
draw.rectangle(background_position, fill="white", outline="black")
|
| 83 |
-
draw.text(text_position, caption, fill="black", font=font)
|
| 84 |
-
|
| 85 |
-
return new_image
|
| 86 |
-
|
| 87 |
-
def reload_from_ckpt(model_path, model, cache_dir=None):
|
| 88 |
-
import os
|
| 89 |
-
from safetensors import safe_open
|
| 90 |
-
from huggingface_hub import hf_hub_download, list_repo_files
|
| 91 |
-
|
| 92 |
-
state_dict = {}
|
| 93 |
-
|
| 94 |
-
# Check if the path is a local directory or HF Hub model
|
| 95 |
-
if os.path.isdir(model_path):
|
| 96 |
-
# Local directory: Load safetensors files
|
| 97 |
-
safetensors_paths = [os.path.join(model_path, f) for f in os.listdir(model_path) if f.endswith('.safetensors')]
|
| 98 |
-
else:
|
| 99 |
-
# HF Hub: Get list of safetensors files and download them
|
| 100 |
-
repo_files = list_repo_files(model_path)
|
| 101 |
-
safetensors_paths = [
|
| 102 |
-
hf_hub_download(model_path, file_name, cache_dir=cache_dir)
|
| 103 |
-
for file_name in repo_files if file_name.endswith('.safetensors')
|
| 104 |
-
]
|
| 105 |
-
|
| 106 |
-
# Load safetensors files into the state_dict
|
| 107 |
-
for path in safetensors_paths:
|
| 108 |
-
with safe_open(path, framework="pt", device="cpu") as f:
|
| 109 |
-
for key in f.keys():
|
| 110 |
-
state_dict[key] = f.get_tensor(key)
|
| 111 |
-
|
| 112 |
-
# Load the state dict into the model
|
| 113 |
-
model.load_state_dict(state_dict, strict=False)
|
| 114 |
-
return model
|
| 115 |
-
|
| 116 |
-
# os.environ['GRADIO_TEMP_DIR'] = './gradio_tmp'
|
| 117 |
-
no_change_btn = gr.Button()
|
| 118 |
-
enable_btn = gr.Button(interactive=True)
|
| 119 |
-
disable_btn = gr.Button(interactive=False)
|
| 120 |
-
|
| 121 |
-
argparser = argparse.ArgumentParser()
|
| 122 |
-
argparser.add_argument("--server_name", default="0.0.0.0", type=str)
|
| 123 |
-
argparser.add_argument("--port", default="6324", type=str)
|
| 124 |
-
argparser.add_argument("--model-path", default="shi-labs/pretrain_dsg_OLA-VLM-CLIP-ViT-Llama3-8b", type=str)
|
| 125 |
-
argparser.add_argument("--model-base", type=str, default=None)
|
| 126 |
-
argparser.add_argument("--num-gpus", type=int, default=1)
|
| 127 |
-
argparser.add_argument("--conv-mode", type=str, default="llava_llama_3")
|
| 128 |
-
argparser.add_argument("--temperature", type=float, default=0.2)
|
| 129 |
-
argparser.add_argument("--max-new-tokens", type=int, default=512)
|
| 130 |
-
argparser.add_argument("--num_frames", type=int, default=16)
|
| 131 |
-
argparser.add_argument("--load-8bit", action="store_true")
|
| 132 |
-
argparser.add_argument("--load-4bit", action="store_true")
|
| 133 |
-
argparser.add_argument("--debug", action="store_true")
|
| 134 |
-
|
| 135 |
-
args = argparser.parse_args()
|
| 136 |
-
model_path = args.model_path
|
| 137 |
-
conv_mode = args.conv_mode
|
| 138 |
-
filt_invalid="cut"
|
| 139 |
-
model_name = get_model_name_from_path(args.model_path)
|
| 140 |
-
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit)
|
| 141 |
-
model = reload_from_ckpt("shi-labs/OLA-VLM-CLIP-ViT-Llama3-8b", model)
|
| 142 |
-
our_chatbot = None
|
| 143 |
-
|
| 144 |
-
pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(f"stabilityai/stable-diffusion-2-1-unclip", torch_dtype=torch.float16, variant="fp16")
|
| 145 |
-
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
| 146 |
-
pipe = pipe.to("cuda")
|
| 147 |
-
|
| 148 |
-
oneformer_processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_coco_swin_large")
|
| 149 |
-
oneformer = OneFormerHead.from_pretrained("shi-labs/oneformer_coco_swin_large").to("cuda")
|
| 150 |
-
|
| 151 |
-
gen_layer_indices = model.config.image_gen["img_layer_indices"].split("-")
|
| 152 |
-
seg_layer_indices = model.config.image_seg["seg_layer_indices"].split("-")
|
| 153 |
-
depth_layer_indices = model.config.image_depth["depth_layer_indices"].split("-")
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
def clear_history():
|
| 157 |
-
state =conv_templates[conv_mode].copy()
|
| 158 |
-
return (state, state.to_gradio_chatbot(), "", None, None, None, None) + (disable_btn,) * 5
|
| 159 |
-
|
| 160 |
-
def add_text(state, imagebox, textbox, image_process_mode):
|
| 161 |
-
if state is None:
|
| 162 |
-
state = conv_templates[conv_mode].copy()
|
| 163 |
-
|
| 164 |
-
if imagebox is not None:
|
| 165 |
-
textbox = DEFAULT_IMAGE_TOKEN + '\n' + textbox
|
| 166 |
-
image = Image.open(imagebox).convert('RGB')
|
| 167 |
-
|
| 168 |
-
if imagebox is not None:
|
| 169 |
-
textbox = (textbox, image, image_process_mode)
|
| 170 |
-
|
| 171 |
-
state.append_message(state.roles[0], textbox)
|
| 172 |
-
state.append_message(state.roles[1], None)
|
| 173 |
-
|
| 174 |
-
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
|
| 175 |
-
|
| 176 |
-
def get_gen_images(out):
|
| 177 |
-
img_embeds = out.image_embs
|
| 178 |
-
if len(img_embeds) == 0:
|
| 179 |
-
return None
|
| 180 |
-
images = []
|
| 181 |
-
for img_embed in img_embeds:
|
| 182 |
-
gen_image = pipe(image_embeds=img_embed.squeeze(1),
|
| 183 |
-
num_inference_steps=25,
|
| 184 |
-
).images[0]
|
| 185 |
-
images.append(gen_image)
|
| 186 |
-
grid_image = make_grid(images, gen_layer_indices)
|
| 187 |
-
return grid_image
|
| 188 |
-
|
| 189 |
-
def get_depth_images(out, org_size):
|
| 190 |
-
depth_preds = out.depth_preds
|
| 191 |
-
|
| 192 |
-
if len(depth_preds) == 0:
|
| 193 |
-
return None
|
| 194 |
-
depths = []
|
| 195 |
-
|
| 196 |
-
for i, depth_pred in enumerate(depth_preds):
|
| 197 |
-
depth = (depth_pred - depth_pred.min()) / (depth_pred.max() - depth_pred.min()) * 255.0
|
| 198 |
-
depth = depth.squeeze(0).cpu().numpy()
|
| 199 |
-
depth = depth.astype(np.uint8)
|
| 200 |
-
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
|
| 201 |
-
depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)
|
| 202 |
-
depth = Image.fromarray(depth)
|
| 203 |
-
depth = depth.resize(org_size)
|
| 204 |
-
depths.append(depth)
|
| 205 |
-
grid_image = make_grid(depths, depth_layer_indices)
|
| 206 |
-
return grid_image
|
| 207 |
-
|
| 208 |
-
def get_seg_images(out, image):
|
| 209 |
-
seg_embs = out.seg_embs
|
| 210 |
-
|
| 211 |
-
if len(seg_embs) == 0:
|
| 212 |
-
return None
|
| 213 |
-
|
| 214 |
-
seg_preds = []
|
| 215 |
-
inputs = oneformer_processor(image, ["semantic"], return_tensors="pt")
|
| 216 |
-
inputs["pixel_values"] = inputs["pixel_values"].to(out.logits.device, out.logits.dtype)
|
| 217 |
-
inputs["task_inputs"] = inputs["task_inputs"].to(out.logits.device, out.logits.dtype)
|
| 218 |
-
backbone_features = oneformer.get_backbone_feats(**inputs)
|
| 219 |
-
for i, seg_emb in enumerate(seg_embs):
|
| 220 |
-
pred = oneformer.get_masks(**inputs, backbone_last_feature=seg_emb.float(), all_backbone_features=backbone_features)
|
| 221 |
-
pred = oneformer_processor.post_process_panoptic_segmentation(
|
| 222 |
-
pred, target_sizes=[image.size[::-1]]
|
| 223 |
-
)[0]
|
| 224 |
-
pred_msk, pred_cls = oneformer_prepare_panoptic_instance_prediction(**pred, oneformer=oneformer)
|
| 225 |
-
pred = visualize_oneformer_masks_on_image(image, pred_msk, pred_cls)
|
| 226 |
-
seg_preds.append(pred)
|
| 227 |
-
grid_image = make_grid(seg_preds, seg_layer_indices)
|
| 228 |
-
return grid_image
|
| 229 |
-
|
| 230 |
-
def delete_text(state, image_process_mode):
|
| 231 |
-
state.messages[-1][-1] = None
|
| 232 |
-
prev_human_msg = state.messages[-2]
|
| 233 |
-
if type(prev_human_msg[1]) in (tuple, list):
|
| 234 |
-
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
|
| 235 |
-
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
|
| 236 |
-
|
| 237 |
-
def regenerate(state, image_process_mode):
|
| 238 |
-
state.messages[-1][-1] = None
|
| 239 |
-
prev_human_msg = state.messages[-2]
|
| 240 |
-
if type(prev_human_msg[1]) in (tuple, list):
|
| 241 |
-
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
|
| 242 |
-
state.skip_next = False
|
| 243 |
-
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
|
| 244 |
-
|
| 245 |
-
def get_interm_outs(state):
|
| 246 |
-
prompt = state.get_prompt()
|
| 247 |
-
images = state.get_images(return_pil=True)
|
| 248 |
-
#prompt, image_args = process_image(prompt, images)
|
| 249 |
-
|
| 250 |
-
if images is not None and len(images) > 0:
|
| 251 |
-
if len(images) > 0:
|
| 252 |
-
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
|
| 253 |
-
raise ValueError("Number of images does not match number of <image> tokens in prompt")
|
| 254 |
-
|
| 255 |
-
#images = [load_image_from_base64(image) for image in images]
|
| 256 |
-
image_sizes = [image.size for image in images]
|
| 257 |
-
inp_images = process_images(images, image_processor, model.config)
|
| 258 |
-
|
| 259 |
-
if type(inp_images) is list:
|
| 260 |
-
inp_images = [image.to(model.device, dtype=torch.float16) for image in images]
|
| 261 |
-
else:
|
| 262 |
-
inp_images = inp_images.to(model.device, dtype=torch.float16)
|
| 263 |
-
else:
|
| 264 |
-
inp_images = None
|
| 265 |
-
image_sizes = None
|
| 266 |
-
image_args = {"images": inp_images, "image_sizes": image_sizes}
|
| 267 |
-
else:
|
| 268 |
-
inp_images = None
|
| 269 |
-
image_args = {}
|
| 270 |
-
|
| 271 |
-
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
|
| 272 |
-
|
| 273 |
-
interm_outs = model.get_visual_interpretations(
|
| 274 |
-
input_ids,
|
| 275 |
-
**image_args
|
| 276 |
-
)
|
| 277 |
-
|
| 278 |
-
depth_outs = get_depth_images(interm_outs, image_sizes[0])
|
| 279 |
-
seg_outs = get_seg_images(interm_outs, images[0])
|
| 280 |
-
gen_outs = get_gen_images(interm_outs)
|
| 281 |
-
|
| 282 |
-
return depth_outs, seg_outs, gen_outs
|
| 283 |
-
|
| 284 |
-
# @spaces.GPU
|
| 285 |
-
def generate(state, temperature, top_p, max_output_tokens):
|
| 286 |
-
prompt = state.get_prompt()
|
| 287 |
-
images = state.get_images(return_pil=True)
|
| 288 |
-
#prompt, image_args = process_image(prompt, images)
|
| 289 |
-
|
| 290 |
-
ori_prompt = prompt
|
| 291 |
-
num_image_tokens = 0
|
| 292 |
-
|
| 293 |
-
if images is not None and len(images) > 0:
|
| 294 |
-
if len(images) > 0:
|
| 295 |
-
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
|
| 296 |
-
raise ValueError("Number of images does not match number of <image> tokens in prompt")
|
| 297 |
-
|
| 298 |
-
#images = [load_image_from_base64(image) for image in images]
|
| 299 |
-
image_sizes = [image.size for image in images]
|
| 300 |
-
images = process_images(images, image_processor, model.config)
|
| 301 |
-
|
| 302 |
-
if type(images) is list:
|
| 303 |
-
images = [image.to(model.device, dtype=torch.float16) for image in images]
|
| 304 |
-
else:
|
| 305 |
-
images = images.to(model.device, dtype=torch.float16)
|
| 306 |
-
else:
|
| 307 |
-
images = None
|
| 308 |
-
image_sizes = None
|
| 309 |
-
image_args = {"images": images, "image_sizes": image_sizes}
|
| 310 |
-
else:
|
| 311 |
-
images = None
|
| 312 |
-
image_args = {}
|
| 313 |
-
|
| 314 |
-
max_context_length = getattr(model.config, 'max_position_embeddings', 2048)
|
| 315 |
-
max_new_tokens = max_output_tokens
|
| 316 |
-
do_sample = True if temperature > 0.001 else False
|
| 317 |
-
stop_str = state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2
|
| 318 |
-
|
| 319 |
-
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
|
| 320 |
-
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
|
| 321 |
-
|
| 322 |
-
max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens)
|
| 323 |
-
|
| 324 |
-
if max_new_tokens < 1:
|
| 325 |
-
return
|
| 326 |
-
|
| 327 |
-
thread = Thread(target=model.generate, kwargs=dict(
|
| 328 |
-
inputs=input_ids,
|
| 329 |
-
do_sample=do_sample,
|
| 330 |
-
temperature=temperature,
|
| 331 |
-
top_p=top_p,
|
| 332 |
-
max_new_tokens=max_new_tokens,
|
| 333 |
-
streamer=streamer,
|
| 334 |
-
use_cache=True,
|
| 335 |
-
pad_token_id=tokenizer.eos_token_id,
|
| 336 |
-
**image_args
|
| 337 |
-
))
|
| 338 |
-
thread.start()
|
| 339 |
-
generated_text = ''
|
| 340 |
-
for new_text in streamer:
|
| 341 |
-
generated_text += new_text
|
| 342 |
-
if generated_text.endswith(stop_str):
|
| 343 |
-
generated_text = generated_text[:-len(stop_str)]
|
| 344 |
-
state.messages[-1][-1] = generated_text
|
| 345 |
-
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
|
| 346 |
-
|
| 347 |
-
yield (state, state.to_gradio_chatbot(), "", None) + (enable_btn,) * 5
|
| 348 |
-
|
| 349 |
-
torch.cuda.empty_cache()
|
| 350 |
-
|
| 351 |
-
txt = gr.Textbox(
|
| 352 |
-
scale=4,
|
| 353 |
-
show_label=False,
|
| 354 |
-
placeholder="Enter text and press enter.",
|
| 355 |
-
container=False,
|
| 356 |
-
)
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
title = "<h1 style='margin-bottom: -10px; text-align: center'>OLA-VLM: Optimizing Language Model Representations for Enhanced Visual Quality and Alignment</h1>"
|
| 360 |
-
description = "<p style='font-size: 16px; margin: 5px; font-weight: w300; text-align: center'> <a href='https://praeclarumjj3.github.io/' style='text-decoration:none' target='_blank'>Jitesh Jain</a>   <a href='https://zyang-ur.github.io/' style='text-decoration:none' target='_blank'>Zhengyuan Yang</a>   <a href='https://www.humphreyshi.com/home' style='text-decoration:none' target='_blank'>Humphrey Shi<sup>*</sup></a>   <a href='https://www.humphreyshi.com/home' style='text-decoration:none' target='_blank'>Jianfeng Gao<sup>*</sup></a>   <a href='https://jwyang.github.io/' style='text-decoration:none' target='_blank'>Jianwei Yang<sup>*</sup></a></p>" \
|
| 361 |
-
+ "<p style='font-size: 12px; margin: 5px; font-weight: w300; text-align: center'><sup>*</sup>Equal Advising</p>" \
|
| 362 |
-
+ "<p style='font-size: 16px; margin: 5px; font-weight: w600; text-align: center'> <a href='https://praeclarumjj3.github.io/ola_vlm/' target='_blank'>Project Page</a> | <a href='https://youtu.be/' target='_blank'>Video</a> | <a href='https://arxiv.org/abs/' target='_blank'>ArXiv</a> | <a href='https://github.com/SHI-Labs/OLA-VLM' target='_blank'>Github</a></p>"
|
| 363 |
-
|
| 364 |
-
tos_markdown = ("""
|
| 365 |
-
### Terms of use
|
| 366 |
-
By using this service, users are required to agree to the following terms:
|
| 367 |
-
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes.
|
| 368 |
-
""")
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
learn_more_markdown = ("""
|
| 372 |
-
### License
|
| 373 |
-
The service is a research preview intended for non-commercial use only, subject to the [License](https://huggingface.co/lmsys/vicuna-7b-v1.5) of Vicuna-v1.5, [License](https://github.com/haotian-liu/LLaVA/blob/main/LICENSE) of LLaVA, [Terms of Use](https://cocodataset.org/#termsofuse) of the COCO dataset, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
|
| 374 |
-
""")
|
| 375 |
-
|
| 376 |
-
block_css = """
|
| 377 |
-
#buttons button {
|
| 378 |
-
min-width: min(120px,100%);
|
| 379 |
-
}
|
| 380 |
-
"""
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
|
| 384 |
-
with gr.Blocks(title="OLA-VLM", theme=gr.themes.Default(), css=block_css) as demo:
|
| 385 |
-
state = gr.State()
|
| 386 |
-
|
| 387 |
-
gr.Markdown(title)
|
| 388 |
-
gr.Markdown(description)
|
| 389 |
-
|
| 390 |
-
with gr.Row():
|
| 391 |
-
with gr.Column(scale=4):
|
| 392 |
-
imagebox = gr.Image(label="Input Image", type="filepath")
|
| 393 |
-
image_process_mode = gr.Radio(
|
| 394 |
-
["Crop", "Resize", "Pad", "Default"],
|
| 395 |
-
value="Default",
|
| 396 |
-
label="Preprocess for non-square image", visible=False)
|
| 397 |
-
|
| 398 |
-
# with gr.Accordion("Parameters", open=False) as parameter_row:
|
| 399 |
-
with gr.Row():
|
| 400 |
-
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",)
|
| 401 |
-
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",)
|
| 402 |
-
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
|
| 403 |
-
|
| 404 |
-
with gr.Column(scale=8):
|
| 405 |
-
chatbot = gr.Chatbot(
|
| 406 |
-
elem_id="chatbot",
|
| 407 |
-
label="OLA-VLM",
|
| 408 |
-
height=300,
|
| 409 |
-
layout="panel",
|
| 410 |
-
)
|
| 411 |
-
textbox.render()
|
| 412 |
-
with gr.Row(elem_id="buttons") as button_row:
|
| 413 |
-
upvote_btn = gr.Button(value="👍 Upvote", interactive=False, visible=False)
|
| 414 |
-
downvote_btn = gr.Button(value="👎 Downvote", interactive=False, visible=False)
|
| 415 |
-
flag_btn = gr.Button(value="⚠️ Flag", interactive=False, visible=False)
|
| 416 |
-
#stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
|
| 417 |
-
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False)
|
| 418 |
-
clear_btn = gr.Button(value="🗑️ Clear", interactive=False)
|
| 419 |
-
submit_btn = gr.Button(value="Send", variant="primary")
|
| 420 |
-
|
| 421 |
-
with gr.Accordion("Representations from selected layers of the LLM (expects only a single image input)", open=False) as interm_out:
|
| 422 |
-
inter_vis_btn = gr.Button(value="✨ Visualize")
|
| 423 |
-
with gr.Row():
|
| 424 |
-
depth_box = gr.Image(label="depth", type="pil", visible=True)
|
| 425 |
-
seg_box = gr.Image(label="seg", type="pil", visible=True)
|
| 426 |
-
gen_box = gr.Image(label="gen", type="pil", visible=True)
|
| 427 |
-
|
| 428 |
-
gr.Examples(examples=[
|
| 429 |
-
[f"assets/cars.jpg", "Which car is in front: the blue or the brown one?"],
|
| 430 |
-
[f"assets/pb.jpg", "Where is the bulding located with respect to the man?"],
|
| 431 |
-
], inputs=[imagebox, textbox], cache_examples=False)
|
| 432 |
-
|
| 433 |
-
# gr.Markdown(tos_markdown)
|
| 434 |
-
# gr.Markdown(learn_more_markdown)
|
| 435 |
-
# url_params = gr.JSON(visible=False)
|
| 436 |
-
|
| 437 |
-
# Register listeners
|
| 438 |
-
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
|
| 439 |
-
|
| 440 |
-
inter_vis_btn.click(
|
| 441 |
-
get_interm_outs,
|
| 442 |
-
[state],
|
| 443 |
-
[depth_box, seg_box, gen_box],
|
| 444 |
-
)
|
| 445 |
-
|
| 446 |
-
clear_btn.click(
|
| 447 |
-
clear_history,
|
| 448 |
-
None,
|
| 449 |
-
[state, chatbot, textbox, imagebox, depth_box, gen_box, seg_box] + btn_list,
|
| 450 |
-
queue=False
|
| 451 |
-
)
|
| 452 |
-
|
| 453 |
-
regenerate_btn.click(
|
| 454 |
-
delete_text,
|
| 455 |
-
[state, image_process_mode],
|
| 456 |
-
[state, chatbot, textbox, imagebox] + btn_list,
|
| 457 |
-
).then(
|
| 458 |
-
generate,
|
| 459 |
-
[state, temperature, top_p, max_output_tokens],
|
| 460 |
-
[state, chatbot, textbox, imagebox] + btn_list,
|
| 461 |
-
)
|
| 462 |
-
textbox.submit(
|
| 463 |
-
add_text,
|
| 464 |
-
[state, imagebox, textbox, image_process_mode],
|
| 465 |
-
[state, chatbot, textbox, imagebox] + btn_list,
|
| 466 |
-
).then(
|
| 467 |
-
generate,
|
| 468 |
-
[state, temperature, top_p, max_output_tokens],
|
| 469 |
-
[state, chatbot, textbox, imagebox] + btn_list,
|
| 470 |
-
)
|
| 471 |
-
|
| 472 |
-
submit_btn.click(
|
| 473 |
-
add_text,
|
| 474 |
-
[state, imagebox, textbox, image_process_mode],
|
| 475 |
-
[state, chatbot, textbox, imagebox] + btn_list,
|
| 476 |
-
).then(
|
| 477 |
-
generate,
|
| 478 |
-
[state, temperature, top_p, max_output_tokens],
|
| 479 |
-
[state, chatbot, textbox, imagebox] + btn_list,
|
| 480 |
-
)
|
| 481 |
-
|
| 482 |
-
demo.queue(
|
| 483 |
-
status_update_rate=10,
|
| 484 |
-
api_open=False
|
| 485 |
-
).launch(share=True)
|
| 486 |
-
demo.queue()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|