Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import pipeline | |
| # Load a Hugging Face model for rewriting | |
| rewrite_pipeline = pipeline("text2text-generation", model="t5-small") | |
| classification_pipeline = pipeline("text-classification", model="textattack/bert-base-uncased-imdb") | |
| def rewrite_and_analyze(input_text, temperature): | |
| # Generate rewritten text | |
| rewritten = rewrite_pipeline(input_text, temperature=temperature, max_length=200) | |
| rewritten_text = rewritten[0]['generated_text'] | |
| # Analyze classification probabilities | |
| analysis = classification_pipeline(rewritten_text, return_all_scores=True)[0] | |
| class_probs = {item['label']: round(item['score'], 3) for item in analysis} | |
| return rewritten_text, class_probs | |
| # Gradio interface | |
| inputs = [ | |
| gr.Textbox(lines=5, placeholder="Enter text here...", label="Input Text"), | |
| gr.Slider(0.1, 2.0, value=1.0, label="Temperature") | |
| ] | |
| outputs = [ | |
| gr.Textbox(label="Rewritten Text"), | |
| gr.JSON(label="Class Probabilities") | |
| ] | |
| app = gr.Interface( | |
| fn=rewrite_and_analyze, | |
| inputs=inputs, | |
| outputs=outputs, | |
| title="Text Rewriter and Classifier" | |
| ) | |
| app.launch() | |