Spaces:
Running
on
Zero
Running
on
Zero
update readme with arxiv paper link
Browse files
README.md
CHANGED
|
@@ -12,4 +12,13 @@ license: apache-2.0
|
|
| 12 |
short_description: 'Demo: Unifying Scheme for Extractive Content Selection Tasks'
|
| 13 |
---
|
| 14 |
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
short_description: 'Demo: Unifying Scheme for Extractive Content Selection Tasks'
|
| 13 |
---
|
| 14 |
|
| 15 |
+
[](http://arxiv.org/abs/2507.16922) [](https://pypi.org/project/igcs/) [](https://github.com/shmuelamar/igcs)
|
| 16 |
+
|
| 17 |
+
## 🚀 Welcome to the IGCS Live Demo!
|
| 18 |
+
|
| 19 |
+
This is a demo for the paper titled [**“A Unifying Scheme for Extractive Content Selection Tasks”**][arxiv-paper] — try Instruction‑Guided Content Selection on **any**
|
| 20 |
+
text or code: use the demo text or upload your document, enter an instruction, choose a model, and hit **Submit** to see the most relevant spans highlighted!
|
| 21 |
+
|
| 22 |
+
🔍 Learn more in our [paper][arxiv-paper] and explore the full [GitHub repo](https://github.com/shmuelamar/igcs) ⭐. Enjoy! 🎉
|
| 23 |
+
|
| 24 |
+
[arxiv-paper]: http://arxiv.org/abs/2507.16922 "A Unifying Scheme for Extractive Content Selection Tasks"
|
app.py
CHANGED
|
@@ -74,6 +74,17 @@ DEFAULT_MODEL = MODELS_LIST[1][1]
|
|
| 74 |
MAX_INPUT_TOKENS = 4500
|
| 75 |
MAX_PROMPT_TOKENS = 256
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
@spaces.GPU
|
| 79 |
def completion(prompt: str, model_id: str):
|
|
@@ -254,9 +265,7 @@ def process_igcs_request(selection_instruction: str, model_id: str, doc_data: li
|
|
| 254 |
def get_app() -> gr.Interface:
|
| 255 |
with gr.Blocks(title="Instruction-guided content selection", theme="ocean", head="") as app:
|
| 256 |
with gr.Row():
|
| 257 |
-
gr.Markdown(
|
| 258 |
-
"Instruction-guided content selection Demo. Check the [GitHub repo](https://github.com/shmuelamar/igcs) and our [paper]() for more info."
|
| 259 |
-
)
|
| 260 |
with gr.Row(equal_height=True):
|
| 261 |
with gr.Column(scale=2, min_width=300):
|
| 262 |
prompt_text = gr.Dropdown(
|
|
|
|
| 74 |
MAX_INPUT_TOKENS = 4500
|
| 75 |
MAX_PROMPT_TOKENS = 256
|
| 76 |
|
| 77 |
+
INTRO_TEXT = """
|
| 78 |
+
## 🚀 Welcome to the IGCS Live Demo!
|
| 79 |
+
|
| 80 |
+
This is a demo for the paper titled [**“A Unifying Scheme for Extractive Content Selection Tasks”**][arxiv-paper] — try Instruction‑Guided Content Selection on **any**
|
| 81 |
+
text or code: use the demo text or upload your document, enter an instruction, choose a model, and hit **Submit** to see the most relevant spans highlighted!
|
| 82 |
+
|
| 83 |
+
🔍 Learn more in our [paper][arxiv-paper] and explore the full [GitHub repo](https://github.com/shmuelamar/igcs) ⭐. Enjoy! 🎉
|
| 84 |
+
|
| 85 |
+
[arxiv-paper]: http://arxiv.org/abs/2507.16922 "A Unifying Scheme for Extractive Content Selection Tasks"
|
| 86 |
+
"""
|
| 87 |
+
|
| 88 |
|
| 89 |
@spaces.GPU
|
| 90 |
def completion(prompt: str, model_id: str):
|
|
|
|
| 265 |
def get_app() -> gr.Interface:
|
| 266 |
with gr.Blocks(title="Instruction-guided content selection", theme="ocean", head="") as app:
|
| 267 |
with gr.Row():
|
| 268 |
+
gr.Markdown(INTRO_TEXT)
|
|
|
|
|
|
|
| 269 |
with gr.Row(equal_height=True):
|
| 270 |
with gr.Column(scale=2, min_width=300):
|
| 271 |
prompt_text = gr.Dropdown(
|