Spaces:
Runtime error
Runtime error
| """ | |
| Modified from https://github.com/CompVis/taming-transformers/blob/master/taming/modules/diffusionmodules/model.py#L34 | |
| """ | |
| import math | |
| from typing import Tuple, Union | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from einops import rearrange, repeat | |
| from einops.layers.torch import Rearrange | |
| def nonlinearity(x): | |
| # swish | |
| return x * torch.sigmoid(x) | |
| def Normalize(in_channels): | |
| return torch.nn.GroupNorm( | |
| num_groups=32, num_channels=in_channels, eps=1e-6, affine=True | |
| ) | |
| class Upsample(nn.Module): | |
| def __init__(self, in_channels, with_conv): | |
| super().__init__() | |
| self.with_conv = with_conv | |
| if self.with_conv: | |
| self.conv = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=3, stride=1, padding=1 | |
| ) | |
| def forward(self, x): | |
| x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") | |
| if self.with_conv: | |
| x = self.conv(x) | |
| return x | |
| class DepthToSpaceUpsample(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| ): | |
| super().__init__() | |
| conv = nn.Conv2d(in_channels, in_channels * 4, 1) | |
| self.net = nn.Sequential( | |
| conv, | |
| nn.SiLU(), | |
| Rearrange("b (c p1 p2) h w -> b c (h p1) (w p2)", p1=2, p2=2), | |
| ) | |
| self.init_conv_(conv) | |
| def init_conv_(self, conv): | |
| o, i, h, w = conv.weight.shape | |
| conv_weight = torch.empty(o // 4, i, h, w) | |
| nn.init.kaiming_uniform_(conv_weight) | |
| conv_weight = repeat(conv_weight, "o ... -> (o 4) ...") | |
| conv.weight.data.copy_(conv_weight) | |
| nn.init.zeros_(conv.bias.data) | |
| def forward(self, x): | |
| out = self.net(x) | |
| return out | |
| class Downsample(nn.Module): | |
| def __init__(self, in_channels, with_conv): | |
| super().__init__() | |
| self.with_conv = with_conv | |
| if self.with_conv: | |
| # no asymmetric padding in torch conv, must do it ourselves | |
| self.conv = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=3, stride=2, padding=0 | |
| ) | |
| def forward(self, x): | |
| if self.with_conv: | |
| pad = (0, 1, 0, 1) | |
| x = torch.nn.functional.pad(x, pad, mode="constant", value=0) | |
| x = self.conv(x) | |
| else: | |
| x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) | |
| return x | |
| def unpack_time(t, batch): | |
| _, c, w, h = t.size() | |
| out = torch.reshape(t, [batch, -1, c, w, h]) | |
| out = rearrange(out, "b t c h w -> b c t h w") | |
| return out | |
| def pack_time(t): | |
| out = rearrange(t, "b c t h w -> b t c h w") | |
| _, _, c, w, h = out.size() | |
| return torch.reshape(out, [-1, c, w, h]) | |
| class TimeDownsample2x(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| dim_out=None, | |
| kernel_size=3, | |
| ): | |
| super().__init__() | |
| if dim_out is None: | |
| dim_out = dim | |
| self.time_causal_padding = (kernel_size - 1, 0) | |
| self.conv = nn.Conv1d(dim, dim_out, kernel_size, stride=2) | |
| def forward(self, x): | |
| x = rearrange(x, "b c t h w -> b h w c t") | |
| b, h, w, c, t = x.size() | |
| x = torch.reshape(x, [-1, c, t]) | |
| x = F.pad(x, self.time_causal_padding) | |
| out = self.conv(x) | |
| out = torch.reshape(out, [b, h, w, c, t]) | |
| out = rearrange(out, "b h w c t -> b c t h w") | |
| out = rearrange(out, "b h w c t -> b c t h w") | |
| return out | |
| class TimeUpsample2x(nn.Module): | |
| def __init__(self, dim, dim_out=None): | |
| super().__init__() | |
| if dim_out is None: | |
| dim_out = dim | |
| conv = nn.Conv1d(dim, dim_out * 2, 1) | |
| self.net = nn.Sequential( | |
| nn.SiLU(), conv, Rearrange("b (c p) t -> b c (t p)", p=2) | |
| ) | |
| self.init_conv_(conv) | |
| def init_conv_(self, conv): | |
| o, i, t = conv.weight.shape | |
| conv_weight = torch.empty(o // 2, i, t) | |
| nn.init.kaiming_uniform_(conv_weight) | |
| conv_weight = repeat(conv_weight, "o ... -> (o 2) ...") | |
| conv.weight.data.copy_(conv_weight) | |
| nn.init.zeros_(conv.bias.data) | |
| def forward(self, x): | |
| x = rearrange(x, "b c t h w -> b h w c t") | |
| b, h, w, c, t = x.size() | |
| x = torch.reshape(x, [-1, c, t]) | |
| out = self.net(x) | |
| out = out[:, :, 1:].contiguous() | |
| out = torch.reshape(out, [b, h, w, c, t]) | |
| out = rearrange(out, "b h w c t -> b c t h w") | |
| return out | |
| class AttnBlock(nn.Module): | |
| def __init__(self, in_channels): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.norm = Normalize(in_channels) | |
| self.q = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| self.k = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| self.v = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| self.proj_out = torch.nn.Conv2d( | |
| in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| def forward(self, x): | |
| h_ = x | |
| h_ = self.norm(h_) | |
| q = self.q(h_) | |
| k = self.k(h_) | |
| v = self.v(h_) | |
| # compute attention | |
| b, c, h, w = q.shape | |
| q = q.reshape(b, c, h * w) | |
| q = q.permute(0, 2, 1) # b,hw,c | |
| k = k.reshape(b, c, h * w) # b,c,hw | |
| w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] | |
| w_ = w_ * (int(c) ** (-0.5)) | |
| w_ = torch.nn.functional.softmax(w_, dim=2) | |
| # attend to values | |
| v = v.reshape(b, c, h * w) | |
| w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) | |
| h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] | |
| h_ = h_.reshape(b, c, h, w) | |
| h_ = self.proj_out(h_) | |
| return x + h_ | |
| class TimeAttention(AttnBlock): | |
| def forward(self, x, *args, **kwargs): | |
| x = rearrange(x, "b c t h w -> b h w t c") | |
| b, h, w, t, c = x.size() | |
| x = torch.reshape(x, (-1, t, c)) | |
| x = super().forward(x, *args, **kwargs) | |
| x = torch.reshape(x, [b, h, w, t, c]) | |
| return rearrange(x, "b h w t c -> b c t h w") | |
| class Residual(nn.Module): | |
| def __init__(self, fn: nn.Module): | |
| super().__init__() | |
| self.fn = fn | |
| def forward(self, x, **kwargs): | |
| return self.fn(x, **kwargs) + x | |
| def cast_tuple(t, length=1): | |
| return t if isinstance(t, tuple) else ((t,) * length) | |
| class CausalConv3d(nn.Module): | |
| def __init__( | |
| self, | |
| chan_in, | |
| chan_out, | |
| kernel_size: Union[int, Tuple[int, int, int]], | |
| pad_mode="constant", | |
| **kwargs | |
| ): | |
| super().__init__() | |
| kernel_size = cast_tuple(kernel_size, 3) | |
| time_kernel_size, height_kernel_size, width_kernel_size = kernel_size | |
| dilation = kwargs.pop("dilation", 1) | |
| stride = kwargs.pop("stride", 1) | |
| self.pad_mode = pad_mode | |
| time_pad = dilation * (time_kernel_size - 1) + (1 - stride) | |
| height_pad = height_kernel_size // 2 | |
| width_pad = width_kernel_size // 2 | |
| self.time_pad = time_pad | |
| self.time_causal_padding = ( | |
| width_pad, | |
| width_pad, | |
| height_pad, | |
| height_pad, | |
| time_pad, | |
| 0, | |
| ) | |
| stride = (stride, 1, 1) | |
| dilation = (dilation, 1, 1) | |
| self.conv = nn.Conv3d( | |
| chan_in, chan_out, kernel_size, stride=stride, dilation=dilation, **kwargs | |
| ) | |
| def forward(self, x): | |
| pad_mode = self.pad_mode if self.time_pad < x.shape[2] else "constant" | |
| x = F.pad(x, self.time_causal_padding, mode=pad_mode) | |
| return self.conv(x) | |
| def ResnetBlockCausal3D( | |
| dim, kernel_size: Union[int, Tuple[int, int, int]], pad_mode: str = "constant" | |
| ): | |
| net = nn.Sequential( | |
| Normalize(dim), | |
| nn.SiLU(), | |
| CausalConv3d(dim, dim, kernel_size, pad_mode), | |
| Normalize(dim), | |
| nn.SiLU(), | |
| CausalConv3d(dim, dim, kernel_size, pad_mode), | |
| ) | |
| return Residual(net) | |
| class ResnetBlock(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| in_channels, | |
| out_channels=None, | |
| conv_shortcut=False, | |
| dropout, | |
| temb_channels=512 | |
| ): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| out_channels = in_channels if out_channels is None else out_channels | |
| self.out_channels = out_channels | |
| self.use_conv_shortcut = conv_shortcut | |
| self.norm1 = Normalize(in_channels) | |
| self.conv1 = torch.nn.Conv2d( | |
| in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
| ) | |
| if temb_channels > 0: | |
| self.temb_proj = torch.nn.Linear(temb_channels, out_channels) | |
| else: | |
| self.temb_proj = None | |
| self.norm2 = Normalize(out_channels) | |
| self.dropout = torch.nn.Dropout(dropout) | |
| self.conv2 = torch.nn.Conv2d( | |
| out_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
| ) | |
| if self.in_channels != self.out_channels: | |
| if self.use_conv_shortcut: | |
| self.conv_shortcut = torch.nn.Conv2d( | |
| in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
| ) | |
| else: | |
| self.nin_shortcut = torch.nn.Conv2d( | |
| in_channels, out_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| def forward(self, x, temb): | |
| h = x | |
| h = self.norm1(h) | |
| h = nonlinearity(h) | |
| h = self.conv1(h) | |
| if temb is not None: | |
| h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] | |
| h = self.norm2(h) | |
| h = nonlinearity(h) | |
| h = self.dropout(h) | |
| h = self.conv2(h) | |
| if self.in_channels != self.out_channels: | |
| if self.use_conv_shortcut: | |
| x = self.conv_shortcut(x) | |
| else: | |
| x = self.nin_shortcut(x) | |
| return x + h | |
| class DinoV2Model(nn.Module): | |
| def __init__( | |
| self, | |
| model_name, | |
| local_checkpoint_path="", | |
| renorm_input=False, | |
| old_input_mean=0.5, | |
| old_input_std=0.5, | |
| freeze_model=False, | |
| ): | |
| super().__init__() | |
| if local_checkpoint_path != "": | |
| self._model = torch.hub.load( | |
| local_checkpoint_path, model_name, source="local" | |
| ) | |
| else: | |
| self._model = torch.hub.load("facebookresearch/dinov2", model_name) | |
| self.register_buffer( | |
| "_dino_input_mean", | |
| torch.tensor([0.485, 0.456, 0.406]).float()[None, :, None, None], | |
| ) | |
| self.register_buffer( | |
| "_dino_input_std", | |
| torch.tensor([0.229, 0.224, 0.225]).float()[None, :, None, None], | |
| ) | |
| self._old_input_mean = old_input_mean | |
| self._old_input_std = old_input_std | |
| self._renorm_input = renorm_input | |
| if freeze_model: | |
| for param in self._model.parameters(): | |
| param.requires_grad = False | |
| def forward(self, inputs): | |
| batch, _, height, width = inputs.size() | |
| if self._renorm_input: | |
| inputs = inputs * self._old_input_mean + self._old_input_std | |
| inputs = (inputs - self._dino_input_mean) / self._dino_input_std | |
| # TODO(yanwan): If we want to remove this resizing, have to modify the decoder to support upscaling by a factor of 14. | |
| # Reduce both height and width to 7/8 of their original values while maintaining aspect ratio to fit dinov2 requirement. | |
| new_height = height // 8 * 7 | |
| new_width = width // 8 * 7 | |
| inputs = F.interpolate(inputs, (new_height, new_width), mode="bilinear") | |
| features = self._model.forward_features(inputs)["x_norm_patchtokens"] | |
| features = torch.transpose(features, 1, 2).contiguous() | |
| features = torch.reshape( | |
| features, (batch, -1, new_height // 14, new_width // 14) | |
| ) | |
| return features | |