Spaces:
Runtime error
Runtime error
| from dataclasses import dataclass, field | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| from .common_modules import * | |
| from .modeling_utils import ConfigMixin, ModelMixin, register_to_config | |
| from .misc import * | |
| import math | |
| class Updateable: | |
| def do_update_step( | |
| self, epoch: int, global_step: int, on_load_weights: bool = False | |
| ): | |
| for attr in self.__dir__(): | |
| if attr.startswith("_"): | |
| continue | |
| try: | |
| module = getattr(self, attr) | |
| except: | |
| continue # ignore attributes like property, which can't be retrived using getattr? | |
| if isinstance(module, Updateable): | |
| module.do_update_step( | |
| epoch, global_step, on_load_weights=on_load_weights | |
| ) | |
| self.update_step(epoch, global_step, on_load_weights=on_load_weights) | |
| def do_update_step_end(self, epoch: int, global_step: int): | |
| for attr in self.__dir__(): | |
| if attr.startswith("_"): | |
| continue | |
| try: | |
| module = getattr(self, attr) | |
| except: | |
| continue # ignore attributes like property, which can't be retrived using getattr? | |
| if isinstance(module, Updateable): | |
| module.do_update_step_end(epoch, global_step) | |
| self.update_step_end(epoch, global_step) | |
| def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False): | |
| # override this method to implement custom update logic | |
| # if on_load_weights is True, you should be careful doing things related to model evaluations, | |
| # as the models and tensors are not guarenteed to be on the same device | |
| pass | |
| def update_step_end(self, epoch: int, global_step: int): | |
| pass | |
| class VQGANEncoder(ModelMixin, ConfigMixin): | |
| class Config: | |
| ch: int = 128 | |
| ch_mult: List[int] = field(default_factory=lambda: [1, 2, 2, 4, 4]) | |
| num_res_blocks: List[int] = field(default_factory=lambda: [4, 3, 4, 3, 4]) | |
| attn_resolutions: List[int] = field(default_factory=lambda: [5]) | |
| dropout: float = 0.0 | |
| in_ch: int = 3 | |
| out_ch: int = 3 | |
| resolution: int = 256 | |
| z_channels: int = 13 | |
| double_z: bool = False | |
| def __init__(self, | |
| ch: int = 128, | |
| ch_mult: List[int] = [1, 2, 2, 4, 4], | |
| num_res_blocks: List[int] = [4, 3, 4, 3, 4], | |
| attn_resolutions: List[int] = [5], | |
| dropout: float = 0.0, | |
| in_ch: int = 3, | |
| out_ch: int = 3, | |
| resolution: int = 256, | |
| z_channels: int = 13, | |
| double_z: bool = False): | |
| super().__init__() | |
| self.ch = ch | |
| self.temb_ch = 0 | |
| self.num_resolutions = len(ch_mult) | |
| self.num_res_blocks = num_res_blocks | |
| self.resolution = resolution | |
| self.in_ch = in_ch | |
| # downsampling | |
| self.conv_in = torch.nn.Conv2d( | |
| self.in_ch, self.ch, kernel_size=3, stride=1, padding=1 | |
| ) | |
| curr_res = self.resolution | |
| in_ch_mult = (1,) + tuple(ch_mult) | |
| self.down = nn.ModuleList() | |
| for i_level in range(self.num_resolutions): | |
| block = nn.ModuleList() | |
| attn = nn.ModuleList() | |
| block_in = self.ch * in_ch_mult[i_level] | |
| block_out = self.ch * ch_mult[i_level] | |
| for i_block in range(self.num_res_blocks[i_level]): | |
| block.append( | |
| ResnetBlock( | |
| in_channels=block_in, | |
| out_channels=block_out, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| ) | |
| ) | |
| block_in = block_out | |
| if curr_res in attn_resolutions: | |
| attn.append(AttnBlock(block_in)) | |
| down = nn.Module() | |
| down.block = block | |
| down.attn = attn | |
| if i_level != self.num_resolutions - 1: | |
| down.downsample = Downsample(block_in, True) | |
| curr_res = curr_res // 2 | |
| self.down.append(down) | |
| # middle | |
| self.mid = nn.Module() | |
| self.mid.block_1 = ResnetBlock( | |
| in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| ) | |
| self.mid.attn_1 = AttnBlock(block_in) | |
| self.mid.block_2 = ResnetBlock( | |
| in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| ) | |
| self.norm_out = Normalize(block_in) | |
| self.conv_out = torch.nn.Conv2d( | |
| block_in, | |
| 2 * z_channels if double_z else z_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| ) | |
| self.quant_conv = torch.nn.Conv2d(z_channels, z_channels, 1) | |
| # for param in self.parameters(): | |
| # broadcast(param, src=0) | |
| def forward(self, x): | |
| # timestep embedding | |
| temb = None | |
| # downsampling | |
| hs = [self.conv_in(x)] | |
| for i_level in range(self.num_resolutions): | |
| for i_block in range(self.num_res_blocks[i_level]): | |
| h = self.down[i_level].block[i_block](hs[-1], temb) | |
| if len(self.down[i_level].attn) > 0: | |
| h = self.down[i_level].attn[i_block](h) | |
| hs.append(h) | |
| if i_level != self.num_resolutions - 1: | |
| hs.append(self.down[i_level].downsample(hs[-1])) | |
| # middle | |
| h = hs[-1] | |
| h = self.mid.block_1(h, temb) | |
| h = self.mid.attn_1(h) | |
| h = self.mid.block_2(h, temb) | |
| # end | |
| h = self.norm_out(h) | |
| h = nonlinearity(h) | |
| h = self.conv_out(h) | |
| h = self.quant_conv(h) | |
| return h | |
| class LFQuantizer(nn.Module): | |
| def __init__(self, num_codebook_entry: int = -1, | |
| codebook_dim: int = 13, | |
| beta: float = 0.25, | |
| entropy_multiplier: float = 0.1, | |
| commit_loss_multiplier: float = 0.1, ): | |
| super().__init__() | |
| self.codebook_size = 2 ** codebook_dim | |
| print( | |
| f"Look-up free quantizer with codebook size: {self.codebook_size}" | |
| ) | |
| self.e_dim = codebook_dim | |
| self.beta = beta | |
| indices = torch.arange(self.codebook_size) | |
| binary = ( | |
| indices.unsqueeze(1) | |
| >> torch.arange(codebook_dim - 1, -1, -1, dtype=torch.long) | |
| ) & 1 | |
| embedding = binary.float() * 2 - 1 | |
| self.register_buffer("embedding", embedding) | |
| self.register_buffer( | |
| "power_vals", 2 ** torch.arange(codebook_dim - 1, -1, -1) | |
| ) | |
| self.commit_loss_multiplier = commit_loss_multiplier | |
| self.entropy_multiplier = entropy_multiplier | |
| def get_indices(self, z_q): | |
| return ( | |
| (self.power_vals.reshape(1, -1, 1, 1) * (z_q > 0).float()) | |
| .sum(1, keepdim=True) | |
| .long() | |
| ) | |
| def get_codebook_entry(self, indices, shape=None): | |
| if shape is None: | |
| h, w = int(math.sqrt(indices.shape[-1])), int(math.sqrt(indices.shape[-1])) | |
| else: | |
| h, w = shape | |
| b, _ = indices.shape | |
| indices = indices.reshape(-1) | |
| z_q = self.embedding[indices] | |
| z_q = z_q.view(b, h, w, -1) | |
| # reshape back to match original input shape | |
| z_q = z_q.permute(0, 3, 1, 2).contiguous() | |
| return z_q | |
| def forward(self, z, get_code=False): | |
| """ | |
| Inputs the output of the encoder network z and maps it to a discrete | |
| one-hot vector that is the index of the closest embedding vector e_j | |
| z (continuous) -> z_q (discrete) | |
| z.shape = (batch, channel, height, width) | |
| quantization pipeline: | |
| 1. get encoder input (B,C,H,W) | |
| 2. flatten input to (B*H*W,C) | |
| """ | |
| if get_code: | |
| return self.get_codebook_entry(z) | |
| # reshape z -> (batch, height, width, channel) and flatten | |
| z = z.permute(0, 2, 3, 1).contiguous() | |
| z_flattened = z.view(-1, self.e_dim) | |
| ge_zero = (z_flattened > 0).float() | |
| ones = torch.ones_like(z_flattened) | |
| z_q = ones * ge_zero + -ones * (1 - ge_zero) | |
| # preserve gradients | |
| z_q = z_flattened + (z_q - z_flattened).detach() | |
| # compute entropy loss | |
| CatDist = torch.distributions.categorical.Categorical | |
| logit = torch.stack( | |
| [ | |
| -(z_flattened - torch.ones_like(z_q)).pow(2), | |
| -(z_flattened - torch.ones_like(z_q) * -1).pow(2), | |
| ], | |
| dim=-1, | |
| ) | |
| cat_dist = CatDist(logits=logit) | |
| entropy = cat_dist.entropy().mean() | |
| mean_prob = cat_dist.probs.mean(0) | |
| mean_entropy = CatDist(probs=mean_prob).entropy().mean() | |
| # compute loss for embedding | |
| commit_loss = torch.mean( | |
| (z_q.detach() - z_flattened) ** 2 | |
| ) + self.beta * torch.mean((z_q - z_flattened.detach()) ** 2) | |
| # reshape back to match original input shape | |
| z_q = z_q.view(z.shape) | |
| z_q = z_q.permute(0, 3, 1, 2).contiguous() | |
| return { | |
| "z": z_q, | |
| "quantizer_loss": commit_loss * self.commit_loss_multiplier, | |
| "entropy_loss": (entropy - mean_entropy) * self.entropy_multiplier, | |
| "indices": self.get_indices(z_q), | |
| } | |
| class VQGANDecoder(ModelMixin, ConfigMixin): | |
| def __init__(self, ch: int = 128, | |
| ch_mult: List[int] = [1, 1, 2, 2, 4], | |
| num_res_blocks: List[int] = [4, 4, 3, 4, 3], | |
| attn_resolutions: List[int] = [5], | |
| dropout: float = 0.0, | |
| in_ch: int = 3, | |
| out_ch: int = 3, | |
| resolution: int = 256, | |
| z_channels: int = 13, | |
| double_z: bool = False): | |
| super().__init__() | |
| self.ch = ch | |
| self.temb_ch = 0 | |
| self.num_resolutions = len(ch_mult) | |
| self.num_res_blocks = num_res_blocks | |
| self.resolution = resolution | |
| self.in_ch = in_ch | |
| self.give_pre_end = False | |
| self.z_channels = z_channels | |
| # compute in_ch_mult, block_in and curr_res at lowest res | |
| in_ch_mult = (1,) + tuple(ch_mult) | |
| block_in = ch * ch_mult[self.num_resolutions - 1] | |
| curr_res = self.resolution // 2 ** (self.num_resolutions - 1) | |
| self.z_shape = (1, z_channels, curr_res, curr_res) | |
| print( | |
| "Working with z of shape {} = {} dimensions.".format( | |
| self.z_shape, np.prod(self.z_shape) | |
| ) | |
| ) | |
| # z to block_in | |
| self.conv_in = torch.nn.Conv2d( | |
| z_channels, block_in, kernel_size=3, stride=1, padding=1 | |
| ) | |
| # middle | |
| self.mid = nn.Module() | |
| self.mid.block_1 = ResnetBlock( | |
| in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| ) | |
| self.mid.attn_1 = AttnBlock(block_in) | |
| self.mid.block_2 = ResnetBlock( | |
| in_channels=block_in, | |
| out_channels=block_in, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| ) | |
| # upsampling | |
| self.up = nn.ModuleList() | |
| for i_level in reversed(range(self.num_resolutions)): | |
| block = nn.ModuleList() | |
| attn = nn.ModuleList() | |
| block_out = ch * ch_mult[i_level] | |
| for i_block in range(self.num_res_blocks[i_level]): | |
| block.append( | |
| ResnetBlock( | |
| in_channels=block_in, | |
| out_channels=block_out, | |
| temb_channels=self.temb_ch, | |
| dropout=dropout, | |
| ) | |
| ) | |
| block_in = block_out | |
| if curr_res in attn_resolutions: | |
| attn.append(AttnBlock(block_in)) | |
| up = nn.Module() | |
| up.block = block | |
| up.attn = attn | |
| if i_level != 0: | |
| up.upsample = Upsample(block_in, True) | |
| curr_res = curr_res * 2 | |
| self.up.insert(0, up) # prepend to get consistent order | |
| self.norm_out = Normalize(block_in) | |
| self.conv_out = torch.nn.Conv2d( | |
| block_in, out_ch, kernel_size=3, stride=1, padding=1 | |
| ) | |
| self.post_quant_conv = torch.nn.Conv2d( | |
| z_channels, z_channels, 1 | |
| ) | |
| def forward(self, z): | |
| # assert z.shape[1:] == self.z_shape[1:] | |
| self.last_z_shape = z.shape | |
| # timestep embedding | |
| temb = None | |
| output = dict() | |
| z = self.post_quant_conv(z) | |
| # z to block_in | |
| h = self.conv_in(z) | |
| # middle | |
| h = self.mid.block_1(h, temb) | |
| h = self.mid.attn_1(h) | |
| h = self.mid.block_2(h, temb) | |
| # upsampling | |
| for i_level in reversed(range(self.num_resolutions)): | |
| for i_block in range(self.num_res_blocks[i_level]): | |
| h = self.up[i_level].block[i_block](h, temb) | |
| if len(self.up[i_level].attn) > 0: | |
| h = self.up[i_level].attn[i_block](h) | |
| if i_level != 0: | |
| h = self.up[i_level].upsample(h) | |
| # end | |
| output["output"] = h | |
| if self.give_pre_end: | |
| return output | |
| h = self.norm_out(h) | |
| h = nonlinearity(h) | |
| h = self.conv_out(h) | |
| output["output"] = h | |
| return output | |
| class MAGVITv2(ModelMixin, ConfigMixin): | |
| def __init__( | |
| self, | |
| ): | |
| super().__init__() | |
| self.encoder = VQGANEncoder() | |
| self.decoder = VQGANDecoder() | |
| self.quantize = LFQuantizer() | |
| def forward(self, pixel_values, return_loss=False): | |
| pass | |
| def encode(self, pixel_values, return_loss=False): | |
| hidden_states = self.encoder(pixel_values) | |
| quantized_states = self.quantize(hidden_states)['z'] | |
| codebook_indices = self.quantize.get_indices(quantized_states).reshape(pixel_values.shape[0], -1) | |
| output = (quantized_states, codebook_indices) | |
| return output | |
| def get_code(self, pixel_values): | |
| hidden_states = self.encoder(pixel_values) | |
| codebook_indices = self.quantize.get_indices(self.quantize(hidden_states)['z']).reshape(pixel_values.shape[0], -1) | |
| return codebook_indices | |
| def decode_code(self, codebook_indices, shape=None): | |
| z_q = self.quantize.get_codebook_entry(codebook_indices, shape=shape) | |
| reconstructed_pixel_values = self.decoder(z_q)["output"] | |
| return reconstructed_pixel_values | |
| if __name__ == '__main__': | |
| encoder = VQGANEncoder() | |
| import ipdb | |
| ipdb.set_trace() | |
| print() |