Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import plotly.express as px
|
| 3 |
+
import plotly.graph_objects as go
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import tweepy
|
| 6 |
+
from plotly.subplots import make_subplots
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
consumer_key = "kG4NXwrJllh7Jv5aLA9yjfb1U"
|
| 9 |
+
consumer_secret = "fH27zr7ZcqYdbQMOSPY3v5a6nEgcOXDyFCJPFSb0VNNinZafCz"
|
| 10 |
+
access_key = "1116912581434695680-SA7ddRFq6GUxISNrL1V5IoN2Z9FK3m"
|
| 11 |
+
access_secret = "JDu1Rj4tj8kSilqawlH88LU8Y7nyu9GcbNZygNCpTk9kd"
|
| 12 |
+
auth = tweepy.OAuthHandler(consumer_key,consumer_secret)
|
| 13 |
+
auth.set_access_token(access_key,access_secret)
|
| 14 |
+
api = tweepy.API(auth)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def get_tweets(username, count):
|
| 18 |
+
tweets = tweepy.Cursor(
|
| 19 |
+
api.user_timeline,
|
| 20 |
+
screen_name=username,
|
| 21 |
+
tweet_mode="extended",
|
| 22 |
+
exclude_replies=True,
|
| 23 |
+
include_rts=False,
|
| 24 |
+
).items(count)
|
| 25 |
+
|
| 26 |
+
tweets = list(tweets)
|
| 27 |
+
response = {
|
| 28 |
+
"tweets": [tweet.full_text.replace("\n", "").lower() for tweet in tweets],
|
| 29 |
+
"timestamps": [str(tweet.created_at) for tweet in tweets],
|
| 30 |
+
"retweets": [tweet.retweet_count for tweet in tweets],
|
| 31 |
+
"likes": [tweet.favorite_count for tweet in tweets],
|
| 32 |
+
}
|
| 33 |
+
return response
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def get_sentiment(texts):
|
| 37 |
+
preds = pipe(texts)
|
| 38 |
+
|
| 39 |
+
response = dict()
|
| 40 |
+
response["labels"] = [pred["label"] for pred in preds]
|
| 41 |
+
response["scores"] = [pred["score"] for pred in preds]
|
| 42 |
+
return response
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def neutralise_sentiment(preds):
|
| 46 |
+
for i, (label, score) in enumerate(zip(preds["labels"], preds["scores"])):
|
| 47 |
+
if score < 0.5:
|
| 48 |
+
preds["labels"][i] = "neutral"
|
| 49 |
+
preds["scores"][i] = 1.0 - score
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def get_aggregation_period(df):
|
| 53 |
+
t_min, t_max = df["timestamps"].min(), df["timestamps"].max()
|
| 54 |
+
t_delta = t_max - t_min
|
| 55 |
+
if t_delta < pd.to_timedelta("30D"):
|
| 56 |
+
return "1D"
|
| 57 |
+
elif t_delta < pd.to_timedelta("365D"):
|
| 58 |
+
return "7D"
|
| 59 |
+
else:
|
| 60 |
+
return "30D"
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
@st.cache(allow_output_mutation=True)
|
| 64 |
+
def load_model():
|
| 65 |
+
pipe = pipeline(task="sentiment-analysis", model="bhadresh-savani/distilbert-base-uncased-emotion")
|
| 66 |
+
return pipe
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
"""
|
| 70 |
+
# Twitter Emotion Analyser
|
| 71 |
+
"""
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
pipe = load_model()
|
| 75 |
+
twitter_handle = st.sidebar.text_input("Twitter handle:", "huggingface")
|
| 76 |
+
twitter_count = st.sidebar.selectbox("Number of tweets:", (10, 100, 500, 1000, 3200))
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
if st.sidebar.button("Get tweets!"):
|
| 80 |
+
tweets = get_tweets(twitter_handle, twitter_count)
|
| 81 |
+
preds = get_sentiment(tweets["tweets"])
|
| 82 |
+
# neutralise_sentiment(preds)
|
| 83 |
+
tweets.update(preds)
|
| 84 |
+
# dataframe creation + preprocessing
|
| 85 |
+
df = pd.DataFrame(tweets)
|
| 86 |
+
df["timestamps"] = pd.to_datetime(df["timestamps"])
|
| 87 |
+
# plots
|
| 88 |
+
agg_period = get_aggregation_period(df)
|
| 89 |
+
ts_sentiment = (
|
| 90 |
+
df.groupby(["timestamps", "labels"])
|
| 91 |
+
.count()["likes"]
|
| 92 |
+
.unstack()
|
| 93 |
+
.resample(agg_period)
|
| 94 |
+
.count()
|
| 95 |
+
.stack()
|
| 96 |
+
.reset_index()
|
| 97 |
+
)
|
| 98 |
+
ts_sentiment.columns = ["timestamp", "label", "count"]
|
| 99 |
+
|
| 100 |
+
fig = make_subplots(rows=1, cols=2, horizontal_spacing=0.15)
|
| 101 |
+
|
| 102 |
+
# TODO: check that stacking makes sense!
|
| 103 |
+
for label in ts_sentiment["label"].unique():
|
| 104 |
+
fig.add_trace(
|
| 105 |
+
go.Scatter(
|
| 106 |
+
x=ts_sentiment.query("label == @label")["timestamp"],
|
| 107 |
+
y=ts_sentiment.query("label == @label")["count"],
|
| 108 |
+
mode="lines",
|
| 109 |
+
name=label,
|
| 110 |
+
stackgroup="one",
|
| 111 |
+
hoverinfo="x+y",
|
| 112 |
+
),
|
| 113 |
+
row=1,
|
| 114 |
+
col=1,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
likes_per_label = df.groupby("labels")["likes"].mean().reset_index()
|
| 118 |
+
|
| 119 |
+
fig.add_trace(
|
| 120 |
+
go.Bar(
|
| 121 |
+
x=likes_per_label["labels"],
|
| 122 |
+
y=likes_per_label["likes"],
|
| 123 |
+
showlegend=False,
|
| 124 |
+
marker_color=px.colors.qualitative.Plotly,
|
| 125 |
+
opacity=0.6,
|
| 126 |
+
),
|
| 127 |
+
row=1,
|
| 128 |
+
col=2,
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
fig.update_yaxes(title_text="Number of Tweets", row=1, col=1)
|
| 132 |
+
fig.update_yaxes(title_text="Number of Likes", row=1, col=2)
|
| 133 |
+
fig.update_layout(height=350, width=750)
|
| 134 |
+
|
| 135 |
+
st.plotly_chart(fig)
|
| 136 |
+
|
| 137 |
+
# tweet sample
|
| 138 |
+
st.markdown(df.sample(n=5).to_markdown())
|