Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Add visual_bge
Browse files- visual_bge/README.md +0 -181
- visual_bge/__init__.py +0 -1
- visual_bge/{visual_bge/eva_clip β eva_clip}/__init__.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/bpe_simple_vocab_16e6.txt.gz +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/constants.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/eva_vit_model.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/factory.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/hf_configs.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/hf_model.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/loss.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/model.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA01-CLIP-B-16.json +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA01-CLIP-g-14-plus.json +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA01-CLIP-g-14.json +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA02-CLIP-B-16.json +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA02-CLIP-L-14-336.json +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA02-CLIP-L-14.json +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA02-CLIP-bigE-14-plus.json +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA02-CLIP-bigE-14.json +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/modified_resnet.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/openai.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/pretrained.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/rope.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/timm_model.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/tokenizer.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/transform.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/transformer.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/utils.py +0 -0
- visual_bge/{visual_bge/modeling.py β modeling.py} +0 -0
- visual_bge/setup.py +0 -18
    	
        visual_bge/README.md
    DELETED
    
    | @@ -1,181 +0,0 @@ | |
| 1 | 
            -
            <h1 align="center">Visualized BGE</h1>
         | 
| 2 | 
            -
             | 
| 3 | 
            -
            <p align="center">
         | 
| 4 | 
            -
                <a href="https://arxiv.org/abs/2406.04292">
         | 
| 5 | 
            -
                        <img alt="Build" src="http://img.shields.io/badge/cs.CV-arXiv%3A2406.04292-B31B1B.svg">
         | 
| 6 | 
            -
                </a>
         | 
| 7 | 
            -
                <a href="https://github.com/FlagOpen/FlagEmbedding/tree/master/research/visual_bge">
         | 
| 8 | 
            -
                    <img alt="Build" src="https://img.shields.io/badge/Github-VISTA Code-blue">
         | 
| 9 | 
            -
                </a>
         | 
| 10 | 
            -
                <a href="https://huggingface.co/BAAI/bge-visualized">
         | 
| 11 | 
            -
                    <img alt="Build" src="https://img.shields.io/badge/π€ Model-VISTA Model-yellow">
         | 
| 12 | 
            -
            </p>
         | 
| 13 | 
            -
             | 
| 14 | 
            -
            <p align="center">
         | 
| 15 | 
            -
            </a>
         | 
| 16 | 
            -
                <a href="https://huggingface.co/datasets/JUNJIE99/VISTA_S2">
         | 
| 17 | 
            -
                    <img alt="Build" src="https://img.shields.io/badge/π€ Dataset-VISTA S2 Training Dataset-yellow">
         | 
| 18 | 
            -
                </a>
         | 
| 19 | 
            -
                <a href="https://huggingface.co/datasets/JUNJIE99/VISTA_Evaluation">
         | 
| 20 | 
            -
                    <img alt="Build" src="https://img.shields.io/badge/π€ Dataset-Zero_Shot Multimodal Retrieval Dataset-yellow">
         | 
| 21 | 
            -
                </a>
         | 
| 22 | 
            -
            </p>
         | 
| 23 | 
            -
             | 
| 24 | 
            -
            ## π News
         | 
| 25 | 
            -
            **[2024.8.27] The core code for the evaluation and fine-tuning of VISTA can be obtained from [this link](https://github.com/JUNJIE99/VISTA_Evaluation_FineTuning). This includes Stage2 training, downstream task fine-tuning, as well as the datasets we used for evaluation.**
         | 
| 26 | 
            -
             | 
| 27 | 
            -
            **[2024.6.13] We have released [VISTA-S2 dataset](https://huggingface.co/datasets/JUNJIE99/VISTA_S2), a hybrid multi-modal dataset consisting of over 500,000 instances for multi-modal training (Stage-2 training in our paper).**
         | 
| 28 | 
            -
             | 
| 29 | 
            -
            **[2024.6.7] We have released our paper. [Arxiv Link](https://arxiv.org/abs/2406.04292)**
         | 
| 30 | 
            -
             | 
| 31 | 
            -
            **[2024.3.18] We have released our code and model.**
         | 
| 32 | 
            -
             | 
| 33 | 
            -
             | 
| 34 | 
            -
             | 
| 35 | 
            -
             | 
| 36 | 
            -
            ## Introduction
         | 
| 37 | 
            -
            In this project, we introduce Visualized-BGE, a universal multi-modal embedding model. By incorporating image token embedding into the BGE Text Embedding framework, Visualized-BGE gains the flexibility to process multi-modal data that goes beyond just text. Visualized-BGE is mainly used for hybrid modal retrieval tasks, including but not limited to:
         | 
| 38 | 
            -
             | 
| 39 | 
            -
            - Multi-Modal Knowledge Retrieval (query: text; candidate: image-text pairs, text, or image)  e.g. [WebQA](https://github.com/WebQnA/WebQA)
         | 
| 40 | 
            -
            - Composed Image Retrieval (query: image-text pair; candidate: images) e.g. [CIRR](https://github.com/Cuberick-Orion/CIRR), [FashionIQ](https://github.com/XiaoxiaoGuo/fashion-iq)
         | 
| 41 | 
            -
            - Knowledge Retrieval with Multi-Modal Queries (query: image-text pair; candidate: texts) e.g. [ReMuQ](https://github.com/luomancs/ReMuQ)
         | 
| 42 | 
            -
             | 
| 43 | 
            -
            Moreover, Visualized BGE fully preserves the strong text embedding capabilities of the original BGE model : )
         | 
| 44 | 
            -
             | 
| 45 | 
            -
            ## Specs
         | 
| 46 | 
            -
            ### Model
         | 
| 47 | 
            -
            | **Model Name** | **Dimension** | **Text Embedding Model** | **Language** | **Weight** |
         | 
| 48 | 
            -
            | --- | --- | --- | --- | --- |
         | 
| 49 | 
            -
            | BAAI/bge-visualized-base-en-v1.5 | 768 | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [π€ HF link](https://huggingface.co/BAAI/bge-visualized/blob/main/Visualized_base_en_v1.5.pth) |
         | 
| 50 | 
            -
            | BAAI/bge-visualized-m3 | 1024 | [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | [π€ HF link](https://huggingface.co/BAAI/bge-visualized/blob/main/Visualized_m3.pth) |
         | 
| 51 | 
            -
             | 
| 52 | 
            -
             | 
| 53 | 
            -
            ### Data
         | 
| 54 | 
            -
            We have generated a hybrid multi-modal dataset consisting of over 500,000 instances for multi-modal training (Stage-2 training in our paper). You can download our dataset from this [π€ HF Link](https://huggingface.co/datasets/JUNJIE99/VISTA_S2). 
         | 
| 55 | 
            -
            Process the image compression package with the following commands:
         | 
| 56 | 
            -
             | 
| 57 | 
            -
            ```bash
         | 
| 58 | 
            -
            cat images.tar.part* > images.tar
         | 
| 59 | 
            -
            tar -xvf images.tar
         | 
| 60 | 
            -
            ```
         | 
| 61 | 
            -
            If you obtain the following directory structure. You can then use the annotation information (json files) for your own training:
         | 
| 62 | 
            -
            ```
         | 
| 63 | 
            -
            images
         | 
| 64 | 
            -
            |__coco
         | 
| 65 | 
            -
            |__edit_image
         | 
| 66 | 
            -
            ```
         | 
| 67 | 
            -
             | 
| 68 | 
            -
            ## Usage
         | 
| 69 | 
            -
            ### Installation:
         | 
| 70 | 
            -
            #### Install FlagEmbedding:
         | 
| 71 | 
            -
            ```
         | 
| 72 | 
            -
            git clone https://github.com/FlagOpen/FlagEmbedding.git
         | 
| 73 | 
            -
            cd FlagEmbedding/research/visual_bge
         | 
| 74 | 
            -
            pip install -e .
         | 
| 75 | 
            -
            ```
         | 
| 76 | 
            -
            #### Another Core Packages:
         | 
| 77 | 
            -
            ```
         | 
| 78 | 
            -
            pip install torchvision timm einops ftfy
         | 
| 79 | 
            -
            ```
         | 
| 80 | 
            -
            You don't need to install `xformer` and `apex`. They are not essential for inference and can often cause issues.
         | 
| 81 | 
            -
             | 
| 82 | 
            -
            ### Generate Embedding for Multi-Modal Data:
         | 
| 83 | 
            -
            Visualized-BGE provides the versatility to encode multi-modal data in a variety of formats, whether it's purely text, solely image-based, or a combination of both.
         | 
| 84 | 
            -
             | 
| 85 | 
            -
            > **Note:** Please download the model weight file ([bge-visualized-base-en-v1.5](https://huggingface.co/BAAI/bge-visualized/resolve/main/Visualized_base_en_v1.5.pth?download=true), [bge-visualized-m3](https://huggingface.co/BAAI/bge-visualized/resolve/main/Visualized_m3.pth?download=true)) in advance and pass the path to the `model_weight` parameter.
         | 
| 86 | 
            -
             | 
| 87 | 
            -
            - Composed Image Retrieval
         | 
| 88 | 
            -
            ``` python
         | 
| 89 | 
            -
            ####### Use Visualized BGE doing composed image retrieval
         | 
| 90 | 
            -
            import torch
         | 
| 91 | 
            -
            from visual_bge.modeling import Visualized_BGE
         | 
| 92 | 
            -
             | 
| 93 | 
            -
            model = Visualized_BGE(model_name_bge = "BAAI/bge-base-en-v1.5", model_weight="path: Visualized_base_en_v1.5.pth")
         | 
| 94 | 
            -
            model.eval()
         | 
| 95 | 
            -
            with torch.no_grad():
         | 
| 96 | 
            -
                query_emb = model.encode(image="./imgs/cir_query.png", text="Make the background dark, as if the camera has taken the photo at night")
         | 
| 97 | 
            -
                candi_emb_1 = model.encode(image="./imgs/cir_candi_1.png")
         | 
| 98 | 
            -
                candi_emb_2 = model.encode(image="./imgs/cir_candi_2.png")
         | 
| 99 | 
            -
             | 
| 100 | 
            -
            sim_1 = query_emb @ candi_emb_1.T
         | 
| 101 | 
            -
            sim_2 = query_emb @ candi_emb_2.T
         | 
| 102 | 
            -
            print(sim_1, sim_2) # tensor([[0.8750]]) tensor([[0.7816]])
         | 
| 103 | 
            -
            ```
         | 
| 104 | 
            -
             | 
| 105 | 
            -
            - Multi-Modal Knowledge Retrieval
         | 
| 106 | 
            -
            ``` python
         | 
| 107 | 
            -
            ####### Use Visualized BGE doing multi-modal knowledge retrieval
         | 
| 108 | 
            -
            import torch
         | 
| 109 | 
            -
            from visual_bge.modeling import Visualized_BGE
         | 
| 110 | 
            -
             | 
| 111 | 
            -
            model = Visualized_BGE(model_name_bge = "BAAI/bge-base-en-v1.5", model_weight="path: Visualized_base_en_v1.5.pth")
         | 
| 112 | 
            -
            model.eval()
         | 
| 113 | 
            -
            with torch.no_grad():
         | 
| 114 | 
            -
                query_emb = model.encode(text="Are there sidewalks on both sides of the Mid-Hudson Bridge?")
         | 
| 115 | 
            -
                candi_emb_1 = model.encode(text="The Mid-Hudson Bridge, spanning the Hudson River between Poughkeepsie and Highland.", image="./imgs/wiki_candi_1.jpg")
         | 
| 116 | 
            -
                candi_emb_2 = model.encode(text="Golden_Gate_Bridge", image="./imgs/wiki_candi_2.jpg")
         | 
| 117 | 
            -
                candi_emb_3 = model.encode(text="The Mid-Hudson Bridge was designated as a New York State Historic Civil Engineering Landmark by the American Society of Civil Engineers in 1983. The bridge was renamed the \"Franklin Delano Roosevelt Mid-Hudson Bridge\" in 1994.")
         | 
| 118 | 
            -
             | 
| 119 | 
            -
            sim_1 = query_emb @ candi_emb_1.T
         | 
| 120 | 
            -
            sim_2 = query_emb @ candi_emb_2.T
         | 
| 121 | 
            -
            sim_3 = query_emb @ candi_emb_3.T
         | 
| 122 | 
            -
            print(sim_1, sim_2, sim_3) # tensor([[0.6932]]) tensor([[0.4441]]) tensor([[0.6415]])
         | 
| 123 | 
            -
            ```
         | 
| 124 | 
            -
            - Multilingual Multi-Modal Retrieval
         | 
| 125 | 
            -
            ``` python
         | 
| 126 | 
            -
            ##### Use M3 doing Multilingual Multi-Modal Retrieval
         | 
| 127 | 
            -
            import torch
         | 
| 128 | 
            -
            from visual_bge.modeling import Visualized_BGE
         | 
| 129 | 
            -
             | 
| 130 | 
            -
            model = Visualized_BGE(model_name_bge = "BAAI/bge-m3", model_weight="path: Visualized_m3.pth")
         | 
| 131 | 
            -
            model.eval()
         | 
| 132 | 
            -
            with torch.no_grad():
         | 
| 133 | 
            -
                query_emb = model.encode(image="./imgs/cir_query.png", text="δΈεΉι©¬η΅ηθΏθΎθ½¦")
         | 
| 134 | 
            -
                candi_emb_1 = model.encode(image="./imgs/cir_candi_1.png")
         | 
| 135 | 
            -
                candi_emb_2 = model.encode(image="./imgs/cir_candi_2.png")
         | 
| 136 | 
            -
             | 
| 137 | 
            -
            sim_1 = query_emb @ candi_emb_1.T
         | 
| 138 | 
            -
            sim_2 = query_emb @ candi_emb_2.T
         | 
| 139 | 
            -
            print(sim_1, sim_2) # tensor([[0.7026]]) tensor([[0.8075]])
         | 
| 140 | 
            -
            ```
         | 
| 141 | 
            -
            ## Downstream Application Cases
         | 
| 142 | 
            -
            - [Huixiangdou](https://github.com/InternLM/HuixiangDou): Using Visualized BGE for the group chat assistant.
         | 
| 143 | 
            -
             | 
| 144 | 
            -
            ## Evaluation Result
         | 
| 145 | 
            -
            Visualized BGE delivers outstanding zero-shot performance across multiple hybrid modal retrieval tasks. It can also serve as a base model for downstream fine-tuning for hybrid modal retrieval tasks.
         | 
| 146 | 
            -
            #### Zero-shot Performance
         | 
| 147 | 
            -
            - Statistical information of the zero-shot multi-modal retrieval benchmark datasets. During the zero-shot evaluation, we utilize the queries from the validation or test set of each dataset to perform retrieval assessments within the entire corpus of the respective dataset.
         | 
| 148 | 
            -
            
         | 
| 149 | 
            -
             | 
| 150 | 
            -
            - Zero-shot evaluation results with Recall@5 on various hybrid multi-modal retrieval benchmarks. The -MM notation indicates baseline models that have undergone multi-modal training on our generated data.
         | 
| 151 | 
            -
            
         | 
| 152 | 
            -
             | 
| 153 | 
            -
            #### Fine-tuning on Downstream Tasks
         | 
| 154 | 
            -
            - Supervised fine-tuning performance on the WebQA dataset. All retrievals are performed on the entire deduplicated corpus.
         | 
| 155 | 
            -
            
         | 
| 156 | 
            -
            - Supervised fine-tuning performance on the CIRR test set.
         | 
| 157 | 
            -
            
         | 
| 158 | 
            -
            - Supervised fine-tuning performance on the ReMuQ test set.
         | 
| 159 | 
            -
            
         | 
| 160 | 
            -
             | 
| 161 | 
            -
             | 
| 162 | 
            -
             | 
| 163 | 
            -
            ## FAQ
         | 
| 164 | 
            -
             | 
| 165 | 
            -
            **Q1: Can Visualized BGE be used for cross-modal retrieval (text to image)?**
         | 
| 166 | 
            -
             | 
| 167 | 
            -
            A1: While it is technically possible, it's not the recommended use case. Our model focus on augmenting hybrid modal retrieval tasks with visual capabilities.
         | 
| 168 | 
            -
             | 
| 169 | 
            -
            ## Acknowledgement
         | 
| 170 | 
            -
            The image token embedding model in this project is built upon the foundations laid by [EVA-CLIP](https://github.com/baaivision/EVA/tree/master/EVA-CLIP).
         | 
| 171 | 
            -
             | 
| 172 | 
            -
            ## Citation
         | 
| 173 | 
            -
            If you find this repository useful, please consider giving a star β and citation
         | 
| 174 | 
            -
            ```
         | 
| 175 | 
            -
            @article{zhou2024vista,
         | 
| 176 | 
            -
              title={VISTA: Visualized Text Embedding For Universal Multi-Modal Retrieval},
         | 
| 177 | 
            -
              author={Zhou, Junjie and Liu, Zheng and Xiao, Shitao and Zhao, Bo and Xiong, Yongping},
         | 
| 178 | 
            -
              journal={arXiv preprint arXiv:2406.04292},
         | 
| 179 | 
            -
              year={2024}
         | 
| 180 | 
            -
            }
         | 
| 181 | 
            -
            ```
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        visual_bge/__init__.py
    DELETED
    
    | @@ -1 +0,0 @@ | |
| 1 | 
            -
            from .modeling import Visualized_BGE
         | 
|  | |
|  | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/__init__.py
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/bpe_simple_vocab_16e6.txt.gz
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/constants.py
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/eva_vit_model.py
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/factory.py
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/hf_configs.py
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/hf_model.py
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/loss.py
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/model.py
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA01-CLIP-B-16.json
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA01-CLIP-g-14-plus.json
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA01-CLIP-g-14.json
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA02-CLIP-B-16.json
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA02-CLIP-L-14-336.json
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA02-CLIP-L-14.json
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA02-CLIP-bigE-14-plus.json
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA02-CLIP-bigE-14.json
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/modified_resnet.py
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/openai.py
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/pretrained.py
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/rope.py
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/timm_model.py
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/tokenizer.py
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/transform.py
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/transformer.py
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/eva_clip β eva_clip}/utils.py
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/{visual_bge/modeling.py β modeling.py}
    RENAMED
    
    | 
            File without changes
         | 
    	
        visual_bge/setup.py
    DELETED
    
    | @@ -1,18 +0,0 @@ | |
| 1 | 
            -
            from setuptools import setup, find_packages
         | 
| 2 | 
            -
             | 
| 3 | 
            -
            setup(
         | 
| 4 | 
            -
                name="visual_bge",
         | 
| 5 | 
            -
                version="0.1.0",
         | 
| 6 | 
            -
                description='visual_bge',
         | 
| 7 | 
            -
                long_description="./README.md",
         | 
| 8 | 
            -
                long_description_content_type="text/markdown",
         | 
| 9 | 
            -
                url='https://github.com/FlagOpen/FlagEmbedding/tree/master/research/visual_bge',
         | 
| 10 | 
            -
                packages=find_packages(),
         | 
| 11 | 
            -
                install_requires=[
         | 
| 12 | 
            -
                    'torchvision',
         | 
| 13 | 
            -
                    'timm',
         | 
| 14 | 
            -
                    'einops',
         | 
| 15 | 
            -
                    'ftfy'
         | 
| 16 | 
            -
                ],
         | 
| 17 | 
            -
                python_requires='>=3.6',
         | 
| 18 | 
            -
            )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
