Spaces:
Sleeping
Sleeping
fsibthinon
commited on
Commit
Β·
67f68f8
1
Parent(s):
c05c4ca
π¦ Add model with LFS tracking
Browse files- .gitattributes +2 -0
- e5_finetuned/1_Pooling/config.json +3 -0
- e5_finetuned/README.md +352 -0
- e5_finetuned/config.json +3 -0
- e5_finetuned/config_sentence_transformers.json +3 -0
- e5_finetuned/model.safetensors +3 -0
- e5_finetuned/modules.json +3 -0
- e5_finetuned/sentence_bert_config.json +3 -0
- e5_finetuned/sentencepiece.bpe.model +3 -0
- e5_finetuned/special_tokens_map.json +3 -0
- e5_finetuned/tokenizer.json +3 -0
- e5_finetuned/tokenizer_config.json +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
e5_finetuned/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
*.json filter=lfs diff=lfs merge=lfs -text
|
e5_finetuned/1_Pooling/config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a19c83805e1ce4174f3fbfec4ac8d3b8dbae0c958f8fd51b80937eb33e0c5335
|
| 3 |
+
size 296
|
e5_finetuned/README.md
ADDED
|
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:30
|
| 8 |
+
- loss:TripletLoss
|
| 9 |
+
base_model: intfloat/multilingual-e5-small
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: 'query: ΰΉΰΈͺΰΈ·ΰΉΰΈΰΉΰΈ'
|
| 12 |
+
sentences:
|
| 13 |
+
- 'positive passage: ΰΉΰΈΰΈΰΉΰΈ’ΰΉΰΈ«ΰΈ‘ ΰΉΰΈͺΰΈ·ΰΉΰΈΰΉΰΈΰΈΰΈ₯ΰΈ°ΰΈͺΰΈ΅ 5 ΰΈΰΈ±ΰΈ§ ΰΉΰΈΰΈͺΰΉ 38'
|
| 14 |
+
- 'negative passage: Majorkids@ ΰΉΰΈͺΰΈ·ΰΉΰΈΰΈ’ΰΈ·ΰΈΰΈ₯ΰΈ²ΰΈ’ΰΈ«ΰΈ‘ΰΈ΅ΰΈͺΰΈ΅ΰΈΰΉΰΈ³ΰΈΰΈ²ΰΈ₯ ΰΈΰΈ²ΰΈΰΉΰΈΰΈΰΈ’ΰΈ΅ΰΈΰΈͺΰΉ 130'
|
| 15 |
+
- 'positive passage: ΰΈΰΈ£ΰΈ²ΰΈ£ΰΈΈΰΉΰΈ so summer ΰΈͺΰΈ΅ ΰΉΰΈΰΈ ΰΉΰΈΰΈͺΰΉ M'
|
| 16 |
+
- source_sentence: 'query: ΰΈΰΉΰΈ³ΰΈͺΰΈ‘ΰΈΈΰΈΰΉΰΈΰΈ£'
|
| 17 |
+
sentences:
|
| 18 |
+
- 'positive passage: Lovejeans ΰΈΰΈ²ΰΈΰΉΰΈΰΈΰΈ’ΰΈ΅ΰΈΰΈͺΰΉ ΰΈΰΈ²ΰΈΰΈ£ΰΈ°ΰΈΰΈΰΈΰΉΰΈ«ΰΈΰΉ ΰΈͺΰΈ΅ΰΈΰΉΰΈ²ΰΉΰΈΰΉΰΈ‘ ΰΉΰΈΰΈ§ΰΈͺΰΈΉΰΈ ΰΈͺΰΈ΅ΰΉΰΈ‘ΰΉΰΈΰΈ
|
| 19 |
+
ΰΈΰΉΰΈ²ΰΉΰΈ‘ΰΉΰΈ’ΰΈ·ΰΈ ΰΉΰΈΰΉΰΈ²ΰΈΰΈ΄ΰΈ ΰΈΰΉΰΈ²ΰΈ«ΰΈΰΈ²ΰΈΰΈΈΰΉΰΈ‘ ΰΈ£ΰΈ«ΰΈ±ΰΈͺ 609'
|
| 20 |
+
- 'negative passage: ΰΈ‘ΰΈ΅ΰΈΰΈͺΰΈ±ΰΈ 5 in one'
|
| 21 |
+
- 'positive passage: ΰΈ£ΰΈΈΰΉΰΈΰΉΰΈΰΉΰΈ² ΰΈΰΉΰΈ³ΰΈͺΰΈ‘ΰΈΈΰΈΰΉΰΈΰΈ£ΰΈΰΉΰΈΰΈ’ΰΉΰΈΰΈ ΰΈΰΈ³ΰΈ£ΰΈΈΰΈΰΉΰΈ ( ΰΈΰΉΰΈΰΈ’ΰΉΰΈΰΈΰΉΰΈΰΉ 100%) ΰΉΰΈΰΉΰΈ
|
| 22 |
+
6 ΰΈΰΈ§ΰΈ'
|
| 23 |
+
- source_sentence: 'query: ΰΉΰΈͺΰΈ·ΰΉΰΈΰΉΰΈ'
|
| 24 |
+
sentences:
|
| 25 |
+
- 'positive passage: ΰΈ₯ΰΈΉΰΈΰΈΰΈ΄ΰΈΰΈΰΈΰΈ yinhei'
|
| 26 |
+
- 'negative passage: Majorkids@ ΰΉΰΈͺΰΈ·ΰΉΰΈΰΈΰΉΰΈ²ΰΉΰΈΰΈΰΈ±ΰΉΰΈΰΉΰΈΰΉΰΈ MIU ΰΉΰΈͺΰΈ·ΰΉΰΈΰΈ’ΰΈ·ΰΈ ΰΈͺΰΈ΅ΰΈΰΈ²ΰΈ§ ΰΈΰΈ²ΰΈΰΉΰΈΰΈΰΈ’ΰΈ΅ΰΈΰΈͺΰΉΰΈΰΈ²ΰΈ’ΰΈ²ΰΈ§
|
| 27 |
+
ΰΈΰΈΈΰΈΰΉΰΈΰΉΰΈ 120'
|
| 28 |
+
- 'positive passage: ΰΉΰΈΰΈΰΈΰΈ₯ΰΈΰΈ’ΰΉΰΈͺ ΰΉΰΈͺΰΈ·ΰΉΰΈΰΉΰΈΰΈΰΈ₯ΰΈ°ΰΈͺΰΈ΅ 5 ΰΈΰΈ±ΰΈ§ ΰΉΰΈΰΈͺΰΉ 40'
|
| 29 |
+
- source_sentence: 'query: ΰΈΰΉΰΈ³ΰΈ‘ΰΈ±ΰΈ'
|
| 30 |
+
sentences:
|
| 31 |
+
- 'negative passage: ΰΈΰΈ£ΰΈ°ΰΉΰΈΰΉΰΈ²ΰΈͺΰΈ΅ΰΈΰΈ·ΰΉΰΈ ΰΉΰΈΰΈΰΈ₯ΰΈ²ΰΈ'
|
| 32 |
+
- 'positive passage: ΰΈΰΉΰΈ³ΰΈ‘ΰΈ±ΰΈΰΈ£ΰΈ³ΰΈΰΉΰΈ²ΰΈ§'
|
| 33 |
+
- 'positive passage: ΰΉΰΈ‘ΰΉΰΈΰΈ΄ΰΈΰΈΰΈΰΈ'
|
| 34 |
+
- source_sentence: 'query: ΰΉΰΈͺΰΈ·ΰΉΰΈΰΉΰΈ'
|
| 35 |
+
sentences:
|
| 36 |
+
- 'positive passage: ΰΈͺΰΉΰΈ‘ΰΈ₯ΰΈ΄ΰΉΰΈ‘ ΰΈ‘ΰΈ°ΰΈ‘ΰΉΰΈ§ΰΈΰΈΰΈ§ΰΈΰΈͺΰΈΈΰΉΰΈΰΈΰΈ±ΰΈ’ ΰΈ‘ΰΈ°ΰΈ‘ΰΉΰΈ§ΰΈΰΈΰΈ§ΰΈ 1 ΰΈΰΈ΄ΰΉΰΈ₯ΰΈΰΈ£ΰΈ±ΰΈ‘'
|
| 37 |
+
- 'negative passage: ΰΉΰΈͺΰΈ·ΰΉΰΈΰΈΰΈ’ΰΈ²ΰΈΰΈ²ΰΈ₯ΰΈΰΈ ΰΉΰΈΰΉΰΈ₯ΰΈΰΉΰΈ«ΰΈ₯ΰΈ‘ ΰΉΰΈ‘ΰΉΰΈΰΈ΄ΰΈΰΈΰΈ£ΰΈ°ΰΈΰΈΈΰΈ‘'
|
| 38 |
+
- 'positive passage: ΰΉΰΈΰΈΰΈ₯ΰΈ΄ΰΈΰΈ£ΰΈΰΈ² ΰΉΰΈͺΰΈ·ΰΉΰΈΰΉΰΈΰΈΰΈ₯ΰΈ°ΰΈͺΰΈ΅ 4 ΰΈΰΈ±ΰΈ§ ΰΉΰΈΰΈͺΰΉ 40'
|
| 39 |
+
pipeline_tag: sentence-similarity
|
| 40 |
+
library_name: sentence-transformers
|
| 41 |
+
---
|
| 42 |
+
|
| 43 |
+
# SentenceTransformer based on intfloat/multilingual-e5-small
|
| 44 |
+
|
| 45 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 46 |
+
|
| 47 |
+
## Model Details
|
| 48 |
+
|
| 49 |
+
### Model Description
|
| 50 |
+
- **Model Type:** Sentence Transformer
|
| 51 |
+
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision c007d7ef6fd86656326059b28395a7a03a7c5846 -->
|
| 52 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 53 |
+
- **Output Dimensionality:** 384 dimensions
|
| 54 |
+
- **Similarity Function:** Cosine Similarity
|
| 55 |
+
<!-- - **Training Dataset:** Unknown -->
|
| 56 |
+
<!-- - **Language:** Unknown -->
|
| 57 |
+
<!-- - **License:** Unknown -->
|
| 58 |
+
|
| 59 |
+
### Model Sources
|
| 60 |
+
|
| 61 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 62 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 63 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 64 |
+
|
| 65 |
+
### Full Model Architecture
|
| 66 |
+
|
| 67 |
+
```
|
| 68 |
+
SentenceTransformer(
|
| 69 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
| 70 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 71 |
+
(2): Normalize()
|
| 72 |
+
)
|
| 73 |
+
```
|
| 74 |
+
|
| 75 |
+
## Usage
|
| 76 |
+
|
| 77 |
+
### Direct Usage (Sentence Transformers)
|
| 78 |
+
|
| 79 |
+
First install the Sentence Transformers library:
|
| 80 |
+
|
| 81 |
+
```bash
|
| 82 |
+
pip install -U sentence-transformers
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
Then you can load this model and run inference.
|
| 86 |
+
```python
|
| 87 |
+
from sentence_transformers import SentenceTransformer
|
| 88 |
+
|
| 89 |
+
# Download from the π€ Hub
|
| 90 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
| 91 |
+
# Run inference
|
| 92 |
+
sentences = [
|
| 93 |
+
'query: ΰΉΰΈͺΰΈ·ΰΉΰΈΰΉΰΈ',
|
| 94 |
+
'positive passage: ΰΉΰΈΰΈΰΈ₯ΰΈ΄ΰΈΰΈ£ΰΈΰΈ² ΰΉΰΈͺΰΈ·ΰΉΰΈΰΉΰΈΰΈΰΈ₯ΰΈ°ΰΈͺΰΈ΅ 4 ΰΈΰΈ±ΰΈ§ ΰΉΰΈΰΈͺΰΉ 40',
|
| 95 |
+
'negative passage: ΰΉΰΈͺΰΈ·ΰΉΰΈΰΈΰΈ’ΰΈ²ΰΈΰΈ²ΰΈ₯ΰΈΰΈ ΰΉΰΈΰΉΰΈ₯ΰΈΰΉΰΈ«ΰΈ₯ΰΈ‘ ΰΉΰΈ‘ΰΉΰΈΰΈ΄ΰΈΰΈΰΈ£ΰΈ°ΰΈΰΈΈΰΈ‘',
|
| 96 |
+
]
|
| 97 |
+
embeddings = model.encode(sentences)
|
| 98 |
+
print(embeddings.shape)
|
| 99 |
+
# [3, 384]
|
| 100 |
+
|
| 101 |
+
# Get the similarity scores for the embeddings
|
| 102 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 103 |
+
print(similarities.shape)
|
| 104 |
+
# [3, 3]
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
+
<!--
|
| 108 |
+
### Direct Usage (Transformers)
|
| 109 |
+
|
| 110 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 111 |
+
|
| 112 |
+
</details>
|
| 113 |
+
-->
|
| 114 |
+
|
| 115 |
+
<!--
|
| 116 |
+
### Downstream Usage (Sentence Transformers)
|
| 117 |
+
|
| 118 |
+
You can finetune this model on your own dataset.
|
| 119 |
+
|
| 120 |
+
<details><summary>Click to expand</summary>
|
| 121 |
+
|
| 122 |
+
</details>
|
| 123 |
+
-->
|
| 124 |
+
|
| 125 |
+
<!--
|
| 126 |
+
### Out-of-Scope Use
|
| 127 |
+
|
| 128 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 129 |
+
-->
|
| 130 |
+
|
| 131 |
+
<!--
|
| 132 |
+
## Bias, Risks and Limitations
|
| 133 |
+
|
| 134 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 135 |
+
-->
|
| 136 |
+
|
| 137 |
+
<!--
|
| 138 |
+
### Recommendations
|
| 139 |
+
|
| 140 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 141 |
+
-->
|
| 142 |
+
|
| 143 |
+
## Training Details
|
| 144 |
+
|
| 145 |
+
### Training Dataset
|
| 146 |
+
|
| 147 |
+
#### Unnamed Dataset
|
| 148 |
+
|
| 149 |
+
* Size: 30 training samples
|
| 150 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
|
| 151 |
+
* Approximate statistics based on the first 30 samples:
|
| 152 |
+
| | sentence_0 | sentence_1 | sentence_2 |
|
| 153 |
+
|:--------|:--------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 154 |
+
| type | string | string | string |
|
| 155 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 7.57 tokens</li><li>max: 9 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 18.47 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 16.97 tokens</li><li>max: 30 tokens</li></ul> |
|
| 156 |
+
* Samples:
|
| 157 |
+
| sentence_0 | sentence_1 | sentence_2 |
|
| 158 |
+
|:-----------------------------|:--------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------|
|
| 159 |
+
| <code>query: ΰΉΰΈͺΰΈ·ΰΉΰΈΰΉΰΈ</code> | <code>positive passage: ΰΉΰΈΰΈΰΈΰΈ₯ΰΈΰΈ’ΰΉΰΈͺ ΰΉΰΈͺΰΈ·ΰΉΰΈΰΉΰΈΰΈΰΈ₯ΰΈ°ΰΈͺΰΈ΅ 5 ΰΈΰΈ±ΰΈ§ ΰΉΰΈΰΈͺΰΉ 40</code> | <code>negative passage: Majorkids@ ΰΉΰΈͺΰΈ·ΰΉΰΈΰΈΰΉΰΈ²ΰΉΰΈΰΈΰΈ±ΰΉΰΈΰΉΰΈΰΉΰΈ MIU ΰΉΰΈͺΰΈ·ΰΉΰΈΰΈ’ΰΈ·ΰΈ ΰΈͺΰΈ΅ΰΈΰΈ²ΰΈ§ ΰΈΰΈ²ΰΈΰΉΰΈΰΈΰΈ’ΰΈ΅ΰΈΰΈͺΰΉΰΈΰΈ²ΰΈ’ΰΈ²ΰΈ§ ΰΈΰΈΈΰΈΰΉΰΈΰΉΰΈ 120</code> |
|
| 160 |
+
| <code>query: ΰΈΰΈ΄ΰΈΰΈΰΈΰΈ</code> | <code>positive passage: ΰΈ₯ΰΈΉΰΈΰΈΰΈ΄ΰΈΰΈΰΈΰΈ sanwei</code> | <code>negative passage: ΰΈΰΈΈΰΈΰΉΰΈͺΰΈ·ΰΉΰΈΰΈΰΈ£ΰΈΰΈ-ΰΈΰΈ²ΰΈΰΉΰΈΰΈΰΈΰΈ²ΰΈΰΈ£ΰΈ°ΰΈΰΈΰΈΰΈΰΈ΄ΰΈΰΈΰΈ΄ΰΉ</code> |
|
| 161 |
+
| <code>query: ΰΈΰΈ₯ΰΈ²ΰΈͺΰΈ£ΰΉΰΈΰΈ’</code> | <code>positive passage: ΰΈΰΈ₯ΰΈ²ΰΈΰΈ²ΰΈ§ΰΈͺΰΈ£ΰΉΰΈΰΈ’ΰΉΰΈ«ΰΉΰΈ500ΰΈΰΈ£ΰΈ±ΰΈ‘(ΰΈΰΈ£ΰΈΆΰΉΰΈΰΉΰΈ₯)</code> | <code>negative passage: ΰΈ‘ΰΈ°ΰΈΰΉΰΈΰΈΰΉΰΈ² 1ΰΈΰΈ΄ΰΉΰΈ₯ΰΈΰΈ£ΰΈ±ΰΈ‘</code> |
|
| 162 |
+
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
|
| 163 |
+
```json
|
| 164 |
+
{
|
| 165 |
+
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
|
| 166 |
+
"triplet_margin": 5
|
| 167 |
+
}
|
| 168 |
+
```
|
| 169 |
+
|
| 170 |
+
### Training Hyperparameters
|
| 171 |
+
#### Non-Default Hyperparameters
|
| 172 |
+
|
| 173 |
+
- `per_device_train_batch_size`: 4
|
| 174 |
+
- `per_device_eval_batch_size`: 4
|
| 175 |
+
- `num_train_epochs`: 4
|
| 176 |
+
- `fp16`: True
|
| 177 |
+
- `multi_dataset_batch_sampler`: round_robin
|
| 178 |
+
|
| 179 |
+
#### All Hyperparameters
|
| 180 |
+
<details><summary>Click to expand</summary>
|
| 181 |
+
|
| 182 |
+
- `overwrite_output_dir`: False
|
| 183 |
+
- `do_predict`: False
|
| 184 |
+
- `eval_strategy`: no
|
| 185 |
+
- `prediction_loss_only`: True
|
| 186 |
+
- `per_device_train_batch_size`: 4
|
| 187 |
+
- `per_device_eval_batch_size`: 4
|
| 188 |
+
- `per_gpu_train_batch_size`: None
|
| 189 |
+
- `per_gpu_eval_batch_size`: None
|
| 190 |
+
- `gradient_accumulation_steps`: 1
|
| 191 |
+
- `eval_accumulation_steps`: None
|
| 192 |
+
- `torch_empty_cache_steps`: None
|
| 193 |
+
- `learning_rate`: 5e-05
|
| 194 |
+
- `weight_decay`: 0.0
|
| 195 |
+
- `adam_beta1`: 0.9
|
| 196 |
+
- `adam_beta2`: 0.999
|
| 197 |
+
- `adam_epsilon`: 1e-08
|
| 198 |
+
- `max_grad_norm`: 1
|
| 199 |
+
- `num_train_epochs`: 4
|
| 200 |
+
- `max_steps`: -1
|
| 201 |
+
- `lr_scheduler_type`: linear
|
| 202 |
+
- `lr_scheduler_kwargs`: {}
|
| 203 |
+
- `warmup_ratio`: 0.0
|
| 204 |
+
- `warmup_steps`: 0
|
| 205 |
+
- `log_level`: passive
|
| 206 |
+
- `log_level_replica`: warning
|
| 207 |
+
- `log_on_each_node`: True
|
| 208 |
+
- `logging_nan_inf_filter`: True
|
| 209 |
+
- `save_safetensors`: True
|
| 210 |
+
- `save_on_each_node`: False
|
| 211 |
+
- `save_only_model`: False
|
| 212 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 213 |
+
- `no_cuda`: False
|
| 214 |
+
- `use_cpu`: False
|
| 215 |
+
- `use_mps_device`: False
|
| 216 |
+
- `seed`: 42
|
| 217 |
+
- `data_seed`: None
|
| 218 |
+
- `jit_mode_eval`: False
|
| 219 |
+
- `use_ipex`: False
|
| 220 |
+
- `bf16`: False
|
| 221 |
+
- `fp16`: True
|
| 222 |
+
- `fp16_opt_level`: O1
|
| 223 |
+
- `half_precision_backend`: auto
|
| 224 |
+
- `bf16_full_eval`: False
|
| 225 |
+
- `fp16_full_eval`: False
|
| 226 |
+
- `tf32`: None
|
| 227 |
+
- `local_rank`: 0
|
| 228 |
+
- `ddp_backend`: None
|
| 229 |
+
- `tpu_num_cores`: None
|
| 230 |
+
- `tpu_metrics_debug`: False
|
| 231 |
+
- `debug`: []
|
| 232 |
+
- `dataloader_drop_last`: False
|
| 233 |
+
- `dataloader_num_workers`: 0
|
| 234 |
+
- `dataloader_prefetch_factor`: None
|
| 235 |
+
- `past_index`: -1
|
| 236 |
+
- `disable_tqdm`: False
|
| 237 |
+
- `remove_unused_columns`: True
|
| 238 |
+
- `label_names`: None
|
| 239 |
+
- `load_best_model_at_end`: False
|
| 240 |
+
- `ignore_data_skip`: False
|
| 241 |
+
- `fsdp`: []
|
| 242 |
+
- `fsdp_min_num_params`: 0
|
| 243 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 244 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 245 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 246 |
+
- `deepspeed`: None
|
| 247 |
+
- `label_smoothing_factor`: 0.0
|
| 248 |
+
- `optim`: adamw_torch
|
| 249 |
+
- `optim_args`: None
|
| 250 |
+
- `adafactor`: False
|
| 251 |
+
- `group_by_length`: False
|
| 252 |
+
- `length_column_name`: length
|
| 253 |
+
- `ddp_find_unused_parameters`: None
|
| 254 |
+
- `ddp_bucket_cap_mb`: None
|
| 255 |
+
- `ddp_broadcast_buffers`: False
|
| 256 |
+
- `dataloader_pin_memory`: True
|
| 257 |
+
- `dataloader_persistent_workers`: False
|
| 258 |
+
- `skip_memory_metrics`: True
|
| 259 |
+
- `use_legacy_prediction_loop`: False
|
| 260 |
+
- `push_to_hub`: False
|
| 261 |
+
- `resume_from_checkpoint`: None
|
| 262 |
+
- `hub_model_id`: None
|
| 263 |
+
- `hub_strategy`: every_save
|
| 264 |
+
- `hub_private_repo`: None
|
| 265 |
+
- `hub_always_push`: False
|
| 266 |
+
- `gradient_checkpointing`: False
|
| 267 |
+
- `gradient_checkpointing_kwargs`: None
|
| 268 |
+
- `include_inputs_for_metrics`: False
|
| 269 |
+
- `include_for_metrics`: []
|
| 270 |
+
- `eval_do_concat_batches`: True
|
| 271 |
+
- `fp16_backend`: auto
|
| 272 |
+
- `push_to_hub_model_id`: None
|
| 273 |
+
- `push_to_hub_organization`: None
|
| 274 |
+
- `mp_parameters`:
|
| 275 |
+
- `auto_find_batch_size`: False
|
| 276 |
+
- `full_determinism`: False
|
| 277 |
+
- `torchdynamo`: None
|
| 278 |
+
- `ray_scope`: last
|
| 279 |
+
- `ddp_timeout`: 1800
|
| 280 |
+
- `torch_compile`: False
|
| 281 |
+
- `torch_compile_backend`: None
|
| 282 |
+
- `torch_compile_mode`: None
|
| 283 |
+
- `include_tokens_per_second`: False
|
| 284 |
+
- `include_num_input_tokens_seen`: False
|
| 285 |
+
- `neftune_noise_alpha`: None
|
| 286 |
+
- `optim_target_modules`: None
|
| 287 |
+
- `batch_eval_metrics`: False
|
| 288 |
+
- `eval_on_start`: False
|
| 289 |
+
- `use_liger_kernel`: False
|
| 290 |
+
- `eval_use_gather_object`: False
|
| 291 |
+
- `average_tokens_across_devices`: False
|
| 292 |
+
- `prompts`: None
|
| 293 |
+
- `batch_sampler`: batch_sampler
|
| 294 |
+
- `multi_dataset_batch_sampler`: round_robin
|
| 295 |
+
|
| 296 |
+
</details>
|
| 297 |
+
|
| 298 |
+
### Framework Versions
|
| 299 |
+
- Python: 3.11.12
|
| 300 |
+
- Sentence Transformers: 4.1.0
|
| 301 |
+
- Transformers: 4.52.2
|
| 302 |
+
- PyTorch: 2.6.0+cu124
|
| 303 |
+
- Accelerate: 1.7.0
|
| 304 |
+
- Datasets: 2.14.4
|
| 305 |
+
- Tokenizers: 0.21.1
|
| 306 |
+
|
| 307 |
+
## Citation
|
| 308 |
+
|
| 309 |
+
### BibTeX
|
| 310 |
+
|
| 311 |
+
#### Sentence Transformers
|
| 312 |
+
```bibtex
|
| 313 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 314 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 315 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 316 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 317 |
+
month = "11",
|
| 318 |
+
year = "2019",
|
| 319 |
+
publisher = "Association for Computational Linguistics",
|
| 320 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 321 |
+
}
|
| 322 |
+
```
|
| 323 |
+
|
| 324 |
+
#### TripletLoss
|
| 325 |
+
```bibtex
|
| 326 |
+
@misc{hermans2017defense,
|
| 327 |
+
title={In Defense of the Triplet Loss for Person Re-Identification},
|
| 328 |
+
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
|
| 329 |
+
year={2017},
|
| 330 |
+
eprint={1703.07737},
|
| 331 |
+
archivePrefix={arXiv},
|
| 332 |
+
primaryClass={cs.CV}
|
| 333 |
+
}
|
| 334 |
+
```
|
| 335 |
+
|
| 336 |
+
<!--
|
| 337 |
+
## Glossary
|
| 338 |
+
|
| 339 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 340 |
+
-->
|
| 341 |
+
|
| 342 |
+
<!--
|
| 343 |
+
## Model Card Authors
|
| 344 |
+
|
| 345 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 346 |
+
-->
|
| 347 |
+
|
| 348 |
+
<!--
|
| 349 |
+
## Model Card Contact
|
| 350 |
+
|
| 351 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 352 |
+
-->
|
e5_finetuned/config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3962b4049975388d0fb28c540c626de201b358868fa4198821160612270ec01a
|
| 3 |
+
size 628
|
e5_finetuned/config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cb2587e90337a94e75defb79c5144662cb945ff0f2e15bc0036e8d44ea650883
|
| 3 |
+
size 205
|
e5_finetuned/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4c25231d589ec2bc7338f29e3cc24a3ba41247b6f660e513ff7ed1b2a18af12e
|
| 3 |
+
size 470637416
|
e5_finetuned/modules.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:84e40c8e006c9b1d6c122e02cba9b02458120b5fb0c87b746c41e0207cf642cf
|
| 3 |
+
size 349
|
e5_finetuned/sentence_bert_config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ec8e29d6dcb61b611b7d3fdd2982c4524e6ad985959fa7194eacfb655a8d0d51
|
| 3 |
+
size 53
|
e5_finetuned/sentencepiece.bpe.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
| 3 |
+
size 5069051
|
e5_finetuned/special_tokens_map.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:38d989b0fdad0fec0c67c14b1f3c8b68184022cf6d4adc5444526ced8653f738
|
| 3 |
+
size 965
|
e5_finetuned/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
|
| 3 |
+
size 17083053
|
e5_finetuned/tokenizer_config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dbdcd9767f0481fd8fd8cd6bce3e73dae7f5c44ce22ae1fde00a66498e71b454
|
| 3 |
+
size 1203
|