Spaces:
Sleeping
Sleeping
change to model bge visual
Browse files
app.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import time
|
| 3 |
from datetime import datetime
|
| 4 |
-
from
|
|
|
|
| 5 |
from qdrant_client import QdrantClient
|
| 6 |
from qdrant_client.models import Filter, FieldCondition, MatchValue
|
| 7 |
import os
|
|
@@ -21,86 +22,91 @@ qdrant_client = QdrantClient(
|
|
| 21 |
# Airtable Config
|
| 22 |
AIRTABLE_API_KEY = os.environ.get("airtable_api")
|
| 23 |
BASE_ID = os.environ.get("airtable_baseid")
|
| 24 |
-
TABLE_NAME = "Feedback_search"
|
| 25 |
-
api = Api(AIRTABLE_API_KEY)
|
| 26 |
-
table = api.table(BASE_ID, TABLE_NAME)
|
| 27 |
|
| 28 |
# Preload Models
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
# Utils
|
| 34 |
-
def is_non_thai(text):
|
| 35 |
return re.match(r'^[A-Za-z0-9&\-\s]+$', text) is not None
|
| 36 |
|
| 37 |
def normalize(text: str) -> str:
|
| 38 |
-
if is_non_thai(text):
|
| 39 |
return text.strip()
|
| 40 |
-
text = unicodedata.normalize("NFC", text)
|
| 41 |
-
return text.replace("เแ", "แ").replace("เเ", "แ").strip().lower()
|
| 42 |
|
| 43 |
# Global state
|
| 44 |
-
latest_query_result = {"query": "", "result": "", "raw_query": "", "time": ""}
|
| 45 |
|
| 46 |
# Search Function
|
| 47 |
def search_product(query):
|
| 48 |
-
yield gr.update(value="🔄 กำลังค้นหา..."), ""
|
| 49 |
|
| 50 |
-
start_time = time.time()
|
| 51 |
-
latest_query_result["raw_query"] = query
|
| 52 |
|
| 53 |
-
corrected_query = normalize(query)
|
| 54 |
-
query_embed = model.encode(corrected_query)
|
| 55 |
|
| 56 |
try:
|
|
|
|
| 57 |
result = qdrant_client.query_points(
|
| 58 |
-
collection_name=collection_name,
|
| 59 |
-
query=query_embed.tolist(),
|
| 60 |
-
with_payload=True,
|
| 61 |
-
|
| 62 |
-
limit=50
|
| 63 |
).points
|
| 64 |
except Exception as e:
|
| 65 |
-
yield gr.update(value="❌ Qdrant error"), f"<p>❌ Qdrant error: {str(e)}</p>"
|
| 66 |
return
|
| 67 |
|
| 68 |
if len(result) > 0:
|
| 69 |
topk = 50 # ดึงมา rerank แค่ 50 อันดับแรกจาก Qdrant
|
| 70 |
result = result[:topk]
|
| 71 |
|
| 72 |
-
scored = []
|
| 73 |
for r in result:
|
| 74 |
-
name = str(r.payload.get("name", "")).lower()
|
| 75 |
-
brand = str(r.payload.get("brand", "")).lower()
|
| 76 |
-
query_lower = corrected_query.lower()
|
| 77 |
|
| 78 |
# ถ้า query สั้นเกินไป ให้ fuzzy_score = 0 เพื่อกันเพี้ยน
|
| 79 |
if len(corrected_query) >= 3 and name:
|
| 80 |
-
fuzzy_name_score = fuzz.partial_ratio(query_lower, name) / 100.0
|
| 81 |
-
fuzzy_brand_score = fuzz.partial_ratio(query_lower, brand) / 100.0
|
| 82 |
else:
|
| 83 |
fuzzy_name_score = 0.0
|
| 84 |
fuzzy_brand_score = fuzz.partial_ratio(query_lower, brand) / 100.0
|
| 85 |
|
| 86 |
# รวม hybrid score
|
| 87 |
if fuzzy_name_score < 0.5:
|
| 88 |
-
hybrid_score = r.score
|
| 89 |
else:
|
| 90 |
-
hybrid_score = 0.7 * r.score + 0.3 * fuzzy_name_score
|
| 91 |
if fuzzy_brand_score >= 0.8:
|
| 92 |
-
hybrid_score = hybrid_score*1.2
|
| 93 |
r.payload["score"] = hybrid_score # เก็บลง payload ใช้เทียบ treshold ตอนเเสดงผล
|
| 94 |
r.payload["fuzzy_name_score"] = fuzzy_name_score # เก็บไว้เผื่อ debug
|
| 95 |
r.payload["fuzzy_brand_score"] = fuzzy_brand_score # เก็บไว้เผื่อ debug
|
| 96 |
r.payload['semantic_score'] = r.score # เก็บไว้เผื่อ debug
|
| 97 |
-
scored.append((r, hybrid_score))
|
| 98 |
|
| 99 |
# เรียงตาม hybrid score แล้วกรองผลลัพธ์ที่ hybrid score ต่ำเกิน
|
| 100 |
-
scored = sorted(scored, key=lambda x: x[1], reverse=True)
|
| 101 |
-
result = [r[0] for r in scored]
|
| 102 |
|
| 103 |
-
elapsed = time.time() - start_time
|
| 104 |
html_output = f"<p>⏱ <strong>{elapsed:.2f} วินาที</strong></p>"
|
| 105 |
if corrected_query != query:
|
| 106 |
html_output += f"<p>🔧 แก้คำค้นจาก: <code>{query}</code> → <code>{corrected_query}</code></p>"
|
|
@@ -108,11 +114,11 @@ def search_product(query):
|
|
| 108 |
result_summary, found = "", False
|
| 109 |
|
| 110 |
for res in result:
|
| 111 |
-
if res.payload["score"] >= threshold:
|
| 112 |
-
found = True
|
| 113 |
name = res.payload.get("name", "ไม่ทราบชื่อสินค้า")
|
| 114 |
score = f"{res.payload['score']:.4f}"
|
| 115 |
-
img_url = res.payload.get("
|
| 116 |
price = res.payload.get("price", "ไม่ระบุ")
|
| 117 |
brand = res.payload.get("brand", "")
|
| 118 |
|
|
@@ -146,6 +152,8 @@ def search_product(query):
|
|
| 146 |
def log_feedback(feedback):
|
| 147 |
try:
|
| 148 |
now = datetime.now().strftime("%Y-%m-%d")
|
|
|
|
|
|
|
| 149 |
table.create({
|
| 150 |
"model": "BGE M3",
|
| 151 |
"timestamp": now,
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import time
|
| 3 |
from datetime import datetime
|
| 4 |
+
from visual_bge.modeling import Visualized_BGE
|
| 5 |
+
from huggingface_hub import hf_hub_download
|
| 6 |
from qdrant_client import QdrantClient
|
| 7 |
from qdrant_client.models import Filter, FieldCondition, MatchValue
|
| 8 |
import os
|
|
|
|
| 22 |
# Airtable Config
|
| 23 |
AIRTABLE_API_KEY = os.environ.get("airtable_api")
|
| 24 |
BASE_ID = os.environ.get("airtable_baseid")
|
| 25 |
+
TABLE_NAME = "Feedback_search" # use table name
|
| 26 |
+
api = Api(AIRTABLE_API_KEY) # api to airtable
|
| 27 |
+
table = api.table(BASE_ID, TABLE_NAME) # choose table
|
| 28 |
|
| 29 |
# Preload Models
|
| 30 |
+
model_weight = hf_hub_download(repo_id="BAAI/bge-visualized", filename="Visualized_m3.pth")
|
| 31 |
+
# Load model
|
| 32 |
+
model = Visualized_BGE(
|
| 33 |
+
model_name_bge="BAAI/bge-m3",
|
| 34 |
+
model_weight=model_weight
|
| 35 |
+
)
|
| 36 |
+
collection_name = "product_visual_bge" # setup collection name in qdrant
|
| 37 |
+
threshold = 0.5 # threshold use when rerank
|
| 38 |
|
| 39 |
# Utils
|
| 40 |
+
def is_non_thai(text): # check if english retune true
|
| 41 |
return re.match(r'^[A-Za-z0-9&\-\s]+$', text) is not None
|
| 42 |
|
| 43 |
def normalize(text: str) -> str:
|
| 44 |
+
if is_non_thai(text): # send text to check english
|
| 45 |
return text.strip()
|
| 46 |
+
text = unicodedata.normalize("NFC", text) # change text to unicode
|
| 47 |
+
return text.replace("เแ", "แ").replace("เเ", "แ").strip().lower() # เเก้กรณีกด เ หลายที
|
| 48 |
|
| 49 |
# Global state
|
| 50 |
+
latest_query_result = {"query": "", "result": "", "raw_query": "", "time": ""} # create for send to airtable
|
| 51 |
|
| 52 |
# Search Function
|
| 53 |
def search_product(query):
|
| 54 |
+
yield gr.update(value="🔄 กำลังค้นหา..."), "" # when user search
|
| 55 |
|
| 56 |
+
start_time = time.time() # start timer
|
| 57 |
+
latest_query_result["raw_query"] = query # collect user qeary
|
| 58 |
|
| 59 |
+
corrected_query = normalize(query) # change query to normalize query
|
| 60 |
+
query_embed = model.encode(text=corrected_query)[0] # embed corrected_query to vector
|
| 61 |
|
| 62 |
try:
|
| 63 |
+
#use qdrant search
|
| 64 |
result = qdrant_client.query_points(
|
| 65 |
+
collection_name=collection_name, # choose collection in qdrant
|
| 66 |
+
query=query_embed.tolist(), # vector query
|
| 67 |
+
with_payload=True, # see payload
|
| 68 |
+
limit=50 # need 50 product
|
|
|
|
| 69 |
).points
|
| 70 |
except Exception as e:
|
| 71 |
+
yield gr.update(value="❌ Qdrant error"), f"<p>❌ Qdrant error: {str(e)}</p>" # have problem when search
|
| 72 |
return
|
| 73 |
|
| 74 |
if len(result) > 0:
|
| 75 |
topk = 50 # ดึงมา rerank แค่ 50 อันดับแรกจาก Qdrant
|
| 76 |
result = result[:topk]
|
| 77 |
|
| 78 |
+
scored = [] # use to collect product and score
|
| 79 |
for r in result:
|
| 80 |
+
name = str(r.payload.get("name", "")).lower() # get name in payload and lowercase
|
| 81 |
+
brand = str(r.payload.get("brand", "")).lower() # get brand in payload and lowercase
|
| 82 |
+
query_lower = corrected_query.lower() # lowercase corected_quey
|
| 83 |
|
| 84 |
# ถ้า query สั้นเกินไป ให้ fuzzy_score = 0 เพื่อกันเพี้ยน
|
| 85 |
if len(corrected_query) >= 3 and name:
|
| 86 |
+
fuzzy_name_score = fuzz.partial_ratio(query_lower, name) / 100.0 # query compare name score
|
| 87 |
+
fuzzy_brand_score = fuzz.partial_ratio(query_lower, brand) / 100.0 # query compare brand score
|
| 88 |
else:
|
| 89 |
fuzzy_name_score = 0.0
|
| 90 |
fuzzy_brand_score = fuzz.partial_ratio(query_lower, brand) / 100.0
|
| 91 |
|
| 92 |
# รวม hybrid score
|
| 93 |
if fuzzy_name_score < 0.5:
|
| 94 |
+
hybrid_score = r.score # not change qdrant score
|
| 95 |
else:
|
| 96 |
+
hybrid_score = 0.7 * r.score + 0.3 * fuzzy_name_score # use qdrant score 70% and fuzzy name score 30%
|
| 97 |
if fuzzy_brand_score >= 0.8:
|
| 98 |
+
hybrid_score = hybrid_score*1.2 # มั่นใจว่าถูกเเบรนด์ เพิ่ม score 120%
|
| 99 |
r.payload["score"] = hybrid_score # เก็บลง payload ใช้เทียบ treshold ตอนเเสดงผล
|
| 100 |
r.payload["fuzzy_name_score"] = fuzzy_name_score # เก็บไว้เผื่อ debug
|
| 101 |
r.payload["fuzzy_brand_score"] = fuzzy_brand_score # เก็บไว้เผื่อ debug
|
| 102 |
r.payload['semantic_score'] = r.score # เก็บไว้เผื่อ debug
|
| 103 |
+
scored.append((r, hybrid_score)) # collect product and hybrid score
|
| 104 |
|
| 105 |
# เรียงตาม hybrid score แล้วกรองผลลัพธ์ที่ hybrid score ต่ำเกิน
|
| 106 |
+
scored = sorted(scored, key=lambda x: x[1], reverse=True) # sort
|
| 107 |
+
result = [r[0] for r in scored] # collect new sort product
|
| 108 |
|
| 109 |
+
elapsed = time.time() - start_time # stop search time
|
| 110 |
html_output = f"<p>⏱ <strong>{elapsed:.2f} วินาที</strong></p>"
|
| 111 |
if corrected_query != query:
|
| 112 |
html_output += f"<p>🔧 แก้คำค้นจาก: <code>{query}</code> → <code>{corrected_query}</code></p>"
|
|
|
|
| 114 |
result_summary, found = "", False
|
| 115 |
|
| 116 |
for res in result:
|
| 117 |
+
if res.payload["score"] >= threshold: # choose only product score more than threshold
|
| 118 |
+
found = True # find product
|
| 119 |
name = res.payload.get("name", "ไม่ทราบชื่อสินค้า")
|
| 120 |
score = f"{res.payload['score']:.4f}"
|
| 121 |
+
img_url = res.payload.get("image_url", "")
|
| 122 |
price = res.payload.get("price", "ไม่ระบุ")
|
| 123 |
brand = res.payload.get("brand", "")
|
| 124 |
|
|
|
|
| 152 |
def log_feedback(feedback):
|
| 153 |
try:
|
| 154 |
now = datetime.now().strftime("%Y-%m-%d")
|
| 155 |
+
# create table for send to airtable
|
| 156 |
+
# คอลัมน์ต้องตรงกับบน airtable
|
| 157 |
table.create({
|
| 158 |
"model": "BGE M3",
|
| 159 |
"timestamp": now,
|