Spaces:
Running
Running
new fuzzy method
Browse files
app.py
CHANGED
|
@@ -6,19 +6,26 @@ from sentence_transformers import SentenceTransformer
|
|
| 6 |
from qdrant_client import QdrantClient
|
| 7 |
from qdrant_client.models import Filter, FieldCondition, MatchValue
|
| 8 |
import os
|
|
|
|
| 9 |
from pythainlp.tokenize import word_tokenize
|
| 10 |
from pyairtable import Table
|
| 11 |
from pyairtable import Api
|
|
|
|
|
|
|
| 12 |
import unicodedata
|
| 13 |
|
| 14 |
|
| 15 |
qdrant_client = QdrantClient(
|
| 16 |
-
url=os.environ.get("Qdrant_url"),
|
| 17 |
-
api_key=os.environ.get("Qdrant_api"),
|
|
|
|
|
|
|
| 18 |
)
|
| 19 |
|
| 20 |
-
AIRTABLE_API_KEY = os.environ.get("airtable_api")
|
| 21 |
-
BASE_ID = os.environ.get("airtable_baseid")
|
|
|
|
|
|
|
| 22 |
TABLE_NAME = "Feedback_search" # หรือเปลี่ยนชื่อให้ชัดเช่น 'Feedback'
|
| 23 |
api = Api(AIRTABLE_API_KEY)
|
| 24 |
table = api.table(BASE_ID, TABLE_NAME)
|
|
@@ -49,10 +56,45 @@ model_config = {
|
|
| 49 |
# Global memory to hold feedback state
|
| 50 |
latest_query_result = {"query": "", "result": "", "model": "", "raw_query": "", "time": ""}
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
# 🌟 Main search function
|
| 58 |
def search_product(query, model_name):
|
|
@@ -61,7 +103,7 @@ def search_product(query, model_name):
|
|
| 61 |
return "<p>❌ ไม่พบโมเดล</p>"
|
| 62 |
|
| 63 |
latest_query_result["raw_query"] = query
|
| 64 |
-
corrected_query =
|
| 65 |
|
| 66 |
query_embed = model_config[model_name]["func"](corrected_query)
|
| 67 |
collection_name = model_config[model_name]["collection"]
|
|
|
|
| 6 |
from qdrant_client import QdrantClient
|
| 7 |
from qdrant_client.models import Filter, FieldCondition, MatchValue
|
| 8 |
import os
|
| 9 |
+
from rapidfuzz import process, fuzz
|
| 10 |
from pythainlp.tokenize import word_tokenize
|
| 11 |
from pyairtable import Table
|
| 12 |
from pyairtable import Api
|
| 13 |
+
import pickle
|
| 14 |
+
import re
|
| 15 |
import unicodedata
|
| 16 |
|
| 17 |
|
| 18 |
qdrant_client = QdrantClient(
|
| 19 |
+
#url=os.environ.get("Qdrant_url"),
|
| 20 |
+
#api_key=os.environ.get("Qdrant_api"),
|
| 21 |
+
url=userdata.get("Qdrant_url"),
|
| 22 |
+
api_key=userdata.get("Qdrant_api"),
|
| 23 |
)
|
| 24 |
|
| 25 |
+
#AIRTABLE_API_KEY = os.environ.get("airtable_api")
|
| 26 |
+
#BASE_ID = os.environ.get("airtable_baseid")
|
| 27 |
+
AIRTABLE_API_KEY = "patwFFErs6fJ8fBhP.15dd01f7be728762fbbb03fdec6284ec01ee0ab84c0abd2ec17374cdaa63500e"
|
| 28 |
+
BASE_ID = "app2OU6L8LK4JLV3M" # จาก URL ของคุณ
|
| 29 |
TABLE_NAME = "Feedback_search" # หรือเปลี่ยนชื่อให้ชัดเช่น 'Feedback'
|
| 30 |
api = Api(AIRTABLE_API_KEY)
|
| 31 |
table = api.table(BASE_ID, TABLE_NAME)
|
|
|
|
| 56 |
# Global memory to hold feedback state
|
| 57 |
latest_query_result = {"query": "", "result": "", "model": "", "raw_query": "", "time": ""}
|
| 58 |
|
| 59 |
+
with open("/content/drive/MyDrive/mypinmall/data/keyword_whitelist.pkl", "rb") as f:
|
| 60 |
+
keyword_whitelist = pickle.load(f)
|
| 61 |
+
#with open("keyword_whitelist.pkl", "rb") as f:
|
| 62 |
+
# keyword_whitelist = pickle.load(f)
|
| 63 |
+
|
| 64 |
+
def normalize(text: str) -> str:
|
| 65 |
+
text = unicodedata.normalize("NFC", text)
|
| 66 |
+
text = text.replace("เแ", "แ").replace("เเ", "แ")
|
| 67 |
+
return text.strip().lower()
|
| 68 |
+
|
| 69 |
+
def smart_tokenize(text: str) -> list:
|
| 70 |
+
tokens = word_tokenize(text.strip(), engine="newmm")
|
| 71 |
+
if not tokens or len("".join(tokens)) < len(text.strip()) * 0.5:
|
| 72 |
+
return [text.strip()]
|
| 73 |
+
return tokens
|
| 74 |
+
|
| 75 |
+
def correct_query_merge_phrases(query: str, whitelist, threshold=75, max_ngram=3):
|
| 76 |
+
query_norm = normalize(query)
|
| 77 |
+
tokens = smart_tokenize(query_norm)
|
| 78 |
+
corrected = []
|
| 79 |
+
i = 0
|
| 80 |
+
|
| 81 |
+
while i < len(tokens):
|
| 82 |
+
matched = False
|
| 83 |
+
for n in range(min(max_ngram, len(tokens) - i), 0, -1):
|
| 84 |
+
phrase = "".join(tokens[i:i+n])
|
| 85 |
+
match, score, _ = process.extractOne(phrase, whitelist, scorer=fuzz.ratio)
|
| 86 |
+
if score >= threshold:
|
| 87 |
+
corrected.append(match)
|
| 88 |
+
i += n
|
| 89 |
+
matched = True
|
| 90 |
+
break
|
| 91 |
+
if not matched:
|
| 92 |
+
corrected.append(tokens[i])
|
| 93 |
+
i += 1
|
| 94 |
+
|
| 95 |
+
# ✅ ตัดคำที่มีความยาว 1 ตัวอักษรและไม่ได้อยู่ใน whitelist
|
| 96 |
+
cleaned = [word for word in corrected if len(word) > 1 or word in whitelist]
|
| 97 |
+
return " ".join(cleaned)
|
| 98 |
|
| 99 |
# 🌟 Main search function
|
| 100 |
def search_product(query, model_name):
|
|
|
|
| 103 |
return "<p>❌ ไม่พบโมเดล</p>"
|
| 104 |
|
| 105 |
latest_query_result["raw_query"] = query
|
| 106 |
+
corrected_query = correct_query_merge_phrases(query,keyword_whitelist)
|
| 107 |
|
| 108 |
query_embed = model_config[model_name]["func"](corrected_query)
|
| 109 |
collection_name = model_config[model_name]["collection"]
|