File size: 6,904 Bytes
eb74057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

"""
Helper functions for HuggingFace integration and model initialization.
"""

import json
import os


def load_hf_token():
    """Load HuggingFace access token from local file"""
    token_file_paths = [
        "/home/aknapitsch/hf_token.txt",
    ]

    for token_path in token_file_paths:
        if os.path.exists(token_path):
            try:
                with open(token_path, "r") as f:
                    token = f.read().strip()
                print(f"Loaded HuggingFace token from: {token_path}")
                return token
            except Exception as e:
                print(f"Error reading token from {token_path}: {e}")
                continue
        else:
            print(token_path, "token_path doesnt exist")

    # Also try environment variable
    # see https://huggingface.co/docs/hub/spaces-overview#managing-secrets on options
    token = (
        os.getenv("HF_TOKEN")
        or os.getenv("HUGGING_FACE_HUB_TOKEN")
        or os.getenv("HUGGING_FACE_MODEL_TOKEN")
    )
    if token:
        print("Loaded HuggingFace token from environment variable")
        return token

    print(
        "Warning: No HuggingFace token found. Model loading may fail for private repositories."
    )
    return None


def init_hydra_config(config_path, overrides=None):
    """Initialize Hydra config"""
    import hydra

    config_dir = os.path.dirname(config_path)
    config_name = os.path.basename(config_path).split(".")[0]
    relative_path = os.path.relpath(config_dir, os.path.dirname(__file__))
    hydra.core.global_hydra.GlobalHydra.instance().clear()
    hydra.initialize(version_base=None, config_path=relative_path)
    if overrides is not None:
        cfg = hydra.compose(config_name=config_name, overrides=overrides)
    else:
        cfg = hydra.compose(config_name=config_name)
    return cfg


def initialize_mapanything_model(high_level_config, device):
    """
    Initialize MapAnything model with three-tier fallback approach:
    1. Try HuggingFace from_pretrained()
    2. Download HF config + use local model factory + load HF weights
    3. Pure local configuration fallback

    Args:
        high_level_config (dict): Configuration dictionary containing model settings
        device (torch.device): Device to load the model on

    Returns:
        torch.nn.Module: Initialized MapAnything model
    """
    import torch
    from huggingface_hub import hf_hub_download
    from mapanything.models import init_model, MapAnything

    print("Initializing MapAnything model...")

    # Initialize Hydra config and create model from configuration
    cfg = init_hydra_config(
        high_level_config["path"], overrides=high_level_config["config_overrides"]
    )

    # Try using from_pretrained first
    try:
        print("Loading MapAnything model from_pretrained...")
        model = MapAnything.from_pretrained(high_level_config["hf_model_name"]).to(
            device
        )
        print("Loading MapAnything model from_pretrained succeeded...")
        return model
    except Exception as e:
        print(f"from_pretrained failed: {e}")
        print("Falling back to local configuration approach using hf_hub_download...")

        # Create model from local configuration instead of using from_pretrained
        # Try to download and use the config from HuggingFace Hub
        try:
            print("Downloading model configuration from HuggingFace Hub...")
            config_path = hf_hub_download(
                repo_id=high_level_config["hf_model_name"],
                filename=high_level_config["config_name"],
                token=load_hf_token(),
            )

            # Load the config from the downloaded file
            with open(config_path, "r") as f:
                downloaded_config = json.load(f)

            print("Using downloaded configuration for model initialization")
            model = init_model(
                model_str=downloaded_config.get(
                    "model_str", high_level_config["model_str"]
                ),
                model_config=downloaded_config.get(
                    "model_config", cfg.model.model_config
                ),
                torch_hub_force_reload=high_level_config.get(
                    "torch_hub_force_reload", False
                ),
            )
        except Exception as config_e:
            print(f"Failed to download/use HuggingFace config: {config_e}")
            print("Falling back to local configuration...")
            # Fall back to local configuration as before
            model = init_model(
                model_str=cfg.model.model_str,
                model_config=cfg.model.model_config,
                torch_hub_force_reload=high_level_config.get(
                    "torch_hub_force_reload", False
                ),
            )

        # Load the pretrained weights from HuggingFace Hub
        try:
            # First, let's see what files are available in the repository
            try:
                checkpoint_filename = high_level_config["checkpoint_name"]
                # Download the model weights
                checkpoint_path = hf_hub_download(
                    repo_id=high_level_config["hf_model_name"],
                    filename=checkpoint_filename,
                    token=load_hf_token(),
                )

                # Load the weights
                print("start loading checkpoint")
                if checkpoint_filename.endswith(".safetensors"):
                    from safetensors.torch import load_file

                    checkpoint = load_file(checkpoint_path)
                else:
                    checkpoint = torch.load(
                        checkpoint_path, map_location="cpu", weights_only=False
                    )

                print("start loading state_dict")
                if "model" in checkpoint:
                    model.load_state_dict(checkpoint["model"], strict=False)
                elif "state_dict" in checkpoint:
                    model.load_state_dict(checkpoint["state_dict"], strict=False)
                else:
                    model.load_state_dict(checkpoint, strict=False)

                print(
                    f"Successfully loaded pretrained weights from HuggingFace Hub ({checkpoint_filename})"
                )

            except Exception as inner_e:
                print(f"Error listing repository files or loading weights: {inner_e}")
                raise inner_e

        except Exception as e:
            print(f"Warning: Could not load pretrained weights: {e}")
            print("Proceeding with randomly initialized model...")

        model = model.to(device)
        return model