Spaces:
Sleeping
Sleeping
File size: 19,692 Bytes
9507532 37de32d 9507532 37de32d 9507532 37de32d 9507532 37de32d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
"""
Inference utilities.
"""
import warnings
from typing import Any, Dict, List
import numpy as np
import torch
from mapanything.utils.geometry import (
depth_edge,
get_rays_in_camera_frame,
normals_edge,
points_to_normals,
quaternion_to_rotation_matrix,
recover_pinhole_intrinsics_from_ray_directions,
rotation_matrix_to_quaternion,
)
from mapanything.utils.image import rgb
# Hard constraints - exactly what users can provide
ALLOWED_VIEW_KEYS = {
"img", # Required - input images
"data_norm_type", # Required - normalization type of the input images
"depth_z", # Optional - Z depth maps
"ray_directions", # Optional - ray directions in camera frame
"intrinsics", # Optional - pinhole camera intrinsics (conflicts with ray_directions)
"camera_poses", # Optional - camera poses
"is_metric_scale", # Optional - whether inputs are metric scale
"true_shape", # Optional - original image shape
"idx", # Optional - index of the view
"instance", # Optional - instance info of the view
}
REQUIRED_KEYS = {"img", "data_norm_type"}
# Define conflicting keys that cannot be used together
CONFLICTING_KEYS = [
("intrinsics", "ray_directions") # Both represent camera projection
]
def loss_of_one_batch_multi_view(
batch,
model,
criterion,
device,
use_amp=False,
amp_dtype="bf16",
ret=None,
ignore_keys=None,
):
"""
Calculate loss for a batch with multiple views.
Args:
batch (list): List of view dictionaries containing input data.
model (torch.nn.Module): Model to run inference with.
criterion (callable, optional): Loss function to compute the loss.
device (torch.device): Device to run the computation on.
use_amp (bool, optional): Whether to use automatic mixed precision. Defaults to False.
amp_dtype (str, optional): Floating point type to use for automatic mixed precision. Options: ["fp32", "fp16", "bf16"]. Defaults to "bf16".
ret (str, optional): If provided, return only the specified key from the result dictionary.
ignore_keys (set, optional): Set of keys to ignore when moving tensors to device.
Defaults to {"dataset", "label", "instance",
"idx", "true_shape", "rng", "data_norm_type"}.
Returns:
dict or Any: If ret is None, returns a dictionary containing views, predictions, and loss.
Otherwise, returns the value associated with the ret key.
"""
# Move necessary tensors to device
if ignore_keys is None:
ignore_keys = set(
[
"depthmap",
"dataset",
"label",
"instance",
"idx",
"true_shape",
"rng",
"data_norm_type",
]
)
for view in batch:
for name in view.keys():
if name in ignore_keys:
continue
view[name] = view[name].to(device, non_blocking=True)
# Determine the mixed precision floating point type
if use_amp:
if amp_dtype == "fp16":
amp_dtype = torch.float16
elif amp_dtype == "bf16":
if torch.cuda.is_bf16_supported():
amp_dtype = torch.bfloat16
else:
warnings.warn(
"bf16 is not supported on this device. Using fp16 instead."
)
amp_dtype = torch.float16
elif amp_dtype == "fp32":
amp_dtype = torch.float32
else:
amp_dtype = torch.float32
# Run model and compute loss
with torch.autocast("cuda", enabled=bool(use_amp), dtype=amp_dtype):
preds = model(batch)
with torch.autocast("cuda", enabled=False):
loss = criterion(batch, preds) if criterion is not None else None
result = {f"view{i + 1}": view for i, view in enumerate(batch)}
result.update({f"pred{i + 1}": pred for i, pred in enumerate(preds)})
result["loss"] = loss
return result[ret] if ret else result
def validate_input_views_for_inference(
views: List[Dict[str, Any]],
) -> List[Dict[str, Any]]:
"""
Strict validation and preprocessing of input views.
Args:
views: List of view dictionaries
Returns:
Validated and preprocessed views
Raises:
ValueError: For invalid keys, missing required keys, conflicting inputs, or invalid camera pose constraints
"""
# Ensure input is not empty
if not views:
raise ValueError("At least one view must be provided")
# Track which views have camera poses
views_with_poses = []
# Validate each view
for view_idx, view in enumerate(views):
# Check for invalid keys
provided_keys = set(view.keys())
invalid_keys = provided_keys - ALLOWED_VIEW_KEYS
if invalid_keys:
raise ValueError(
f"View {view_idx} contains invalid keys: {invalid_keys}. "
f"Allowed keys are: {sorted(ALLOWED_VIEW_KEYS)}"
)
# Check for missing required keys
missing_keys = REQUIRED_KEYS - provided_keys
if missing_keys:
raise ValueError(f"View {view_idx} missing required keys: {missing_keys}")
# Check for conflicting keys
for conflict_set in CONFLICTING_KEYS:
present_conflicts = [key for key in conflict_set if key in provided_keys]
if len(present_conflicts) > 1:
raise ValueError(
f"View {view_idx} contains conflicting keys: {present_conflicts}. "
f"Only one of {conflict_set} can be provided at a time."
)
# Check depth constraint: If depth is provided, intrinsics or ray_directions must also be provided
if "depth_z" in provided_keys:
if (
"intrinsics" not in provided_keys
and "ray_directions" not in provided_keys
):
raise ValueError(
f"View {view_idx} depth constraint violation: If 'depth_z' is provided, "
f"then 'intrinsics' or 'ray_directions' must also be provided. "
f"Z Depth values require camera calibration information to be meaningful for an image."
)
# Track views with camera poses
if "camera_poses" in provided_keys:
views_with_poses.append(view_idx)
# Cross-view constraint: If any view has camera_poses, view 0 must have them too
if views_with_poses and 0 not in views_with_poses:
raise ValueError(
f"Camera pose constraint violation: Views {views_with_poses} have camera_poses, "
f"but view 0 (reference view) does not. When using camera_poses, the first view "
f"must also provide camera_poses to serve as the reference frame."
)
return views
def preprocess_input_views_for_inference(
views: List[Dict[str, Any]],
) -> List[Dict[str, Any]]:
"""
Pre-process input views to match the expected internal input format.
The following steps are performed:
1. Convert intrinsics to ray directions when required. If ray directions are already provided, unit normalize them.
2. Convert depth_z to depth_along_ray
3. Convert camera_poses to the expected input keys (camera_pose_quats and camera_pose_trans)
4. Default is_metric_scale to True when not provided
Args:
views: List of view dictionaries
Returns:
Preprocessed views with consistent internal format
"""
processed_views = []
for view_idx, view in enumerate(views):
# Copy the view dictionary to avoid modifying the original input
processed_view = dict(view)
# Step 1: Convert intrinsics to ray_directions when required. If ray_directions are provided, unit normalize them.
if "intrinsics" in view:
images = view["img"]
height, width = images.shape[-2:]
intrinsics = view["intrinsics"]
_, ray_directions = get_rays_in_camera_frame(
intrinsics=intrinsics,
height=height,
width=width,
normalize_to_unit_sphere=True,
)
processed_view["ray_directions"] = ray_directions
del processed_view["intrinsics"]
elif "ray_directions" in view:
ray_directions = view["ray_directions"]
ray_norm = torch.norm(ray_directions, dim=-1, keepdim=True)
processed_view["ray_directions"] = ray_directions / (ray_norm + 1e-8)
# Step 2: Convert depth_z to depth_along_ray
if "depth_z" in view:
depth_z = view["depth_z"]
ray_directions = processed_view["ray_directions"]
ray_directions_unit_plane = ray_directions / ray_directions[..., 2:3]
pts3d_cam = depth_z * ray_directions_unit_plane
depth_along_ray = torch.norm(pts3d_cam, dim=-1, keepdim=True)
processed_view["depth_along_ray"] = depth_along_ray
del processed_view["depth_z"]
# Step 3: Convert camera_poses to expected input keys
if "camera_poses" in view:
camera_poses = view["camera_poses"]
if isinstance(camera_poses, tuple) and len(camera_poses) == 2:
quats, trans = camera_poses
processed_view["camera_pose_quats"] = quats
processed_view["camera_pose_trans"] = trans
elif torch.is_tensor(camera_poses) and camera_poses.shape[-2:] == (4, 4):
rotation_matrices = camera_poses[:, :3, :3]
translation_vectors = camera_poses[:, :3, 3]
quats = rotation_matrix_to_quaternion(rotation_matrices)
processed_view["camera_pose_quats"] = quats
processed_view["camera_pose_trans"] = translation_vectors
else:
raise ValueError(
f"View {view_idx}: camera_poses must be either a tuple of (quats, trans) "
f"or a tensor of (B, 4, 4) transformation matrices."
)
del processed_view["camera_poses"]
# Step 4: Default is_metric_scale to True when not provided
if "is_metric_scale" not in processed_view:
# Get batch size from the image tensor
batch_size = view["img"].shape[0]
# Default to True for all samples in the batch
processed_view["is_metric_scale"] = torch.ones(
batch_size, dtype=torch.bool, device=view["img"].device
)
# Rename keys to match expected model input format
if "ray_directions" in processed_view:
processed_view["ray_directions_cam"] = processed_view["ray_directions"]
del processed_view["ray_directions"]
# Append the processed view to the list
processed_views.append(processed_view)
return processed_views
def postprocess_model_outputs_for_inference(
raw_outputs: List[Dict[str, torch.Tensor]],
input_views: List[Dict[str, Any]],
apply_mask: bool = True,
mask_edges: bool = True,
edge_normal_threshold: float = 5.0,
edge_depth_threshold: float = 0.03,
apply_confidence_mask: bool = False,
confidence_percentile: float = 10,
) -> List[Dict[str, torch.Tensor]]:
"""
Post-process raw model outputs by copying raw outputs and adding essential derived fields.
This function simplifies the raw model outputs by:
1. Copying all raw outputs as-is
2. Adding denormalized images (img_no_norm)
3. Adding Z depth (depth_z) from camera frame points
4. Recovering pinhole camera intrinsics from ray directions
5. Adding camera pose matrices (camera_poses) if pose data is available
6. Applying mask to dense geometry outputs if requested (supports edge masking and confidence masking)
Args:
raw_outputs: List of raw model output dictionaries, one per view
input_views: List of original input view dictionaries, one per view
apply_mask: Whether to apply non-ambiguous mask to dense outputs. Defaults to True.
mask_edges: Whether to compute an edge mask based on normals and depth and apply it to the output. Defaults to True.
apply_confidence_mask: Whether to apply the confidence mask to the output. Defaults to False.
confidence_percentile: The percentile to use for the confidence threshold. Defaults to 10.
Returns:
List of processed output dictionaries containing:
- All original raw outputs (after masking dense geometry outputs if requested)
- 'img_no_norm': Denormalized RGB images (B, H, W, 3)
- 'depth_z': Z depth from camera frame (B, H, W, 1) if points in camera frame available
- 'intrinsics': Recovered pinhole camera intrinsics (B, 3, 3) if ray directions available
- 'camera_poses': 4x4 pose matrices (B, 4, 4) if pose data available
- 'mask': comprehensive mask for dense geometry outputs (B, H, W, 1) if requested
"""
processed_outputs = []
for view_idx, (raw_output, original_view) in enumerate(
zip(raw_outputs, input_views)
):
# Start by copying all raw outputs
processed_output = dict(raw_output)
# 1. Add denormalized images
img = original_view["img"] # Shape: (B, 3, H, W)
data_norm_type = original_view["data_norm_type"][0]
img_hwc = rgb(img, data_norm_type)
# Convert numpy back to torch if needed (rgb returns numpy)
if isinstance(img_hwc, np.ndarray):
img_hwc = torch.from_numpy(img_hwc).to(img.device)
processed_output["img_no_norm"] = img_hwc
# 2. Add Z depth if we have camera frame points
if "pts3d_cam" in processed_output:
processed_output["depth_z"] = processed_output["pts3d_cam"][..., 2:3]
# 3. Recover pinhole camera intrinsics from ray directions if available
if "ray_directions" in processed_output:
intrinsics = recover_pinhole_intrinsics_from_ray_directions(
processed_output["ray_directions"]
)
processed_output["intrinsics"] = intrinsics
# 4. Add camera pose matrices if both translation and quaternions are available
if "cam_trans" in processed_output and "cam_quats" in processed_output:
cam_trans = processed_output["cam_trans"] # (B, 3)
cam_quats = processed_output["cam_quats"] # (B, 4)
batch_size = cam_trans.shape[0]
# Convert quaternions to rotation matrices
rotation_matrices = quaternion_to_rotation_matrix(cam_quats) # (B, 3, 3)
# Create 4x4 pose matrices
pose_matrices = (
torch.eye(4, device=img.device).unsqueeze(0).repeat(batch_size, 1, 1)
)
pose_matrices[:, :3, :3] = rotation_matrices
pose_matrices[:, :3, 3] = cam_trans
processed_output["camera_poses"] = pose_matrices # (B, 4, 4)
# 5. Apply comprehensive mask to dense geometry outputs if requested
if apply_mask:
final_mask = None
# Start with non-ambiguous mask if available
if "non_ambiguous_mask" in processed_output:
non_ambiguous_mask = (
processed_output["non_ambiguous_mask"].cpu().numpy()
) # (B, H, W)
final_mask = non_ambiguous_mask
# Apply confidence mask if requested and available
if apply_confidence_mask and "conf" in processed_output:
confidences = processed_output["conf"].cpu() # (B, H, W)
# Compute percentile threshold for each batch element
batch_size = confidences.shape[0]
conf_mask = torch.zeros_like(confidences, dtype=torch.bool)
percentile_threshold = (
torch.quantile(
confidences.reshape(batch_size, -1),
confidence_percentile / 100.0,
dim=1,
)
.unsqueeze(-1)
.unsqueeze(-1)
) # Shape: (B, 1, 1)
# Compute mask for each batch element
conf_mask = confidences > percentile_threshold
conf_mask = conf_mask.numpy()
if final_mask is not None:
final_mask = final_mask & conf_mask
else:
final_mask = conf_mask
# Apply edge mask if requested and we have the required data
if mask_edges and final_mask is not None and "pts3d" in processed_output:
# Get 3D points for edge computation
pred_pts3d = processed_output["pts3d"].cpu().numpy() # (B, H, W, 3)
batch_size, height, width = final_mask.shape
edge_masks = []
for b in range(batch_size):
batch_final_mask = final_mask[b] # (H, W)
batch_pts3d = pred_pts3d[b] # (H, W, 3)
if batch_final_mask.any(): # Only compute if we have valid points
# Compute normals and normal-based edge mask
normals, normals_mask = points_to_normals(
batch_pts3d, mask=batch_final_mask
)
normal_edges = normals_edge(
normals, tol=edge_normal_threshold, mask=normals_mask
)
# Compute depth-based edge mask
depth_z = (
processed_output["depth_z"][b].squeeze(-1).cpu().numpy()
)
depth_edges = depth_edge(
depth_z, rtol=edge_depth_threshold, mask=batch_final_mask
)
# Combine both edge types
edge_mask = ~(depth_edges & normal_edges)
edge_masks.append(edge_mask)
else:
# No valid points, keep all as invalid
edge_masks.append(np.zeros_like(batch_final_mask, dtype=bool))
# Stack batch edge masks and combine with final mask
edge_mask = np.stack(edge_masks, axis=0) # (B, H, W)
final_mask = final_mask & edge_mask
# Apply final mask to dense geometry outputs if we have a mask
if final_mask is not None:
# Convert mask to torch tensor
final_mask_torch = torch.from_numpy(final_mask).to(
processed_output["pts3d"].device
)
final_mask_torch = final_mask_torch.unsqueeze(-1) # (B, H, W, 1)
# Apply mask to dense geometry outputs (zero out invalid regions)
dense_geometry_keys = [
"pts3d",
"pts3d_cam",
"depth_along_ray",
"depth_z",
]
for key in dense_geometry_keys:
if key in processed_output:
processed_output[key] = processed_output[key] * final_mask_torch
# Add mask to processed output
processed_output["mask"] = final_mask_torch
processed_outputs.append(processed_output)
return processed_outputs
|