Spaces:
Running
Running
File size: 17,336 Bytes
9507532 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
"""
Utils for Metrics
Source for Pose AUC Metrics: VGGT
"""
import math
import numpy as np
import torch
import torch.nn.functional as F
def l2_distance_of_unit_quats_to_angular_error(l2_distance):
"""
Converts a given L2 distance (for unit quaternions) to the angular error in degrees.
For two quaternions differing by an angle θ the relationship is:
L2 distance = 2 * sin(θ/4)
Hence, the angular error in degrees is computed as:
4 * asin(l2_distance / 2) * (180/π)
Args:
l2_distance: L2 distance between two unit quaternions (torch.Tensor, shape: (N,))
Returns:
angular_error_degrees: Angular error in degrees (torch.Tensor, shape: (N,))
"""
angular_error_radians = 4 * torch.asin(l2_distance / 2)
angular_error_degrees = angular_error_radians * 180.0 / math.pi
return angular_error_degrees
def l2_distance_of_unit_ray_directions_to_angular_error(l2_distance):
"""
Converts a given L2 distance (for unit ray directions) to the angular error in degrees.
For two unit ray directions differing by an angle θ the relationship is:
L2 distance = 2 * sin(θ/2)
Hence, the angular error in degrees is computed as:
2 * asin(l2_distance / 2) * (180/π)
Args:
l2_distance: L2 distance between two unit ray directions (torch.Tensor, shape: (N,))
Returns:
angular_error_degrees: Angular error in degrees (torch.Tensor, shape: (N,))
"""
angular_error_radians = 2 * torch.asin(l2_distance / 2)
angular_error_degrees = angular_error_radians * 180.0 / math.pi
return angular_error_degrees
def valid_mean(arr, mask, axis=None, keepdims=np._NoValue):
"""Compute mean of elements across given dimensions of an array, considering only valid elements.
Args:
arr: The array to compute the mean.
mask: Array with numerical or boolean values for element weights or validity. For bool, False means invalid.
axis: Dimensions to reduce.
keepdims: If true, retains reduced dimensions with length 1.
Returns:
Mean array/scalar and a valid array/scalar that indicates where the mean could be computed successfully.
"""
mask = mask.astype(arr.dtype) if mask.dtype == bool else mask
num_valid = np.sum(mask, axis=axis, keepdims=keepdims)
masked_arr = arr * mask
masked_arr_sum = np.sum(masked_arr, axis=axis, keepdims=keepdims)
with np.errstate(divide="ignore", invalid="ignore"):
valid_mean = masked_arr_sum / num_valid
is_valid = np.isfinite(valid_mean)
valid_mean = np.nan_to_num(valid_mean, nan=0, posinf=0, neginf=0)
return valid_mean, is_valid
def thresh_inliers(gt, pred, thresh=1.03, mask=None, output_scaling_factor=1.0):
"""Computes the inlier (=error within a threshold) ratio for a predicted and ground truth dense map of size H x W x C.
Args:
gt: Ground truth depth map as numpy array of shape HxW. Negative or 0 values are invalid and ignored.
pred: Predicted depth map as numpy array of shape HxW.
thresh: Threshold for the relative difference between the prediction and ground truth. Default: 1.03
mask: Array of shape HxW with boolean values to indicate validity. For bool, False means invalid. Default: None
output_scaling_factor: Scaling factor that is applied after computing the metrics (e.g. to get [%]). Default: 1
Returns:
Scalar that indicates the inlier ratio. Scalar is np.nan if the result is invalid.
"""
# Compute the norms
gt_norm = np.linalg.norm(gt, axis=-1)
pred_norm = np.linalg.norm(pred, axis=-1)
gt_norm_valid = (gt_norm) > 0
if mask is not None:
combined_mask = mask & gt_norm_valid
else:
combined_mask = gt_norm_valid
with np.errstate(divide="ignore", invalid="ignore"):
rel_1 = np.nan_to_num(
gt_norm / pred_norm, nan=thresh + 1, posinf=thresh + 1, neginf=thresh + 1
) # pred=0 should be an outlier
rel_2 = np.nan_to_num(
pred_norm / gt_norm, nan=0, posinf=0, neginf=0
) # gt=0 is masked out anyways
max_rel = np.maximum(rel_1, rel_2)
inliers = ((0 < max_rel) & (max_rel < thresh)).astype(
np.float32
) # 1 for inliers, 0 for outliers
inlier_ratio, valid = valid_mean(inliers, combined_mask)
inlier_ratio = inlier_ratio * output_scaling_factor
inlier_ratio = inlier_ratio if valid else np.nan
return inlier_ratio
def m_rel_ae(gt, pred, mask=None, output_scaling_factor=1.0):
"""Computes the mean-relative-absolute-error for a predicted and ground truth dense map of size HxWxC.
Args:
gt: Ground truth map as numpy array of shape H x W x C.
pred: Predicted map as numpy array of shape H x W x C.
mask: Array of shape HxW with boolean values to indicate validity. For bool, False means invalid. Default: None
output_scaling_factor: Scaling factor that is applied after computing the metrics (e.g. to get [%]). Default: 1
Returns:
Scalar that indicates the mean-relative-absolute-error. Scalar is np.nan if the result is invalid.
"""
error_norm = np.linalg.norm(pred - gt, axis=-1)
gt_norm = np.linalg.norm(gt, axis=-1)
gt_norm_valid = (gt_norm) > 0
if mask is not None:
combined_mask = mask & gt_norm_valid
else:
combined_mask = gt_norm_valid
with np.errstate(divide="ignore", invalid="ignore"):
rel_ae = np.nan_to_num(error_norm / gt_norm, nan=0, posinf=0, neginf=0)
m_rel_ae, valid = valid_mean(rel_ae, combined_mask)
m_rel_ae = m_rel_ae * output_scaling_factor
m_rel_ae = m_rel_ae if valid else np.nan
return m_rel_ae
def align(model, data):
"""Align two trajectories using the method of Horn (closed-form).
Args:
model -- first trajectory (3xn)
data -- second trajectory (3xn)
Returns:
rot -- rotation matrix (3x3)
trans -- translation vector (3x1)
trans_error -- translational error per point (1xn)
"""
np.set_printoptions(precision=3, suppress=True)
model_zerocentered = model - model.mean(1).reshape((3, -1))
data_zerocentered = data - data.mean(1).reshape((3, -1))
W = np.zeros((3, 3))
for column in range(model.shape[1]):
W += np.outer(model_zerocentered[:, column], data_zerocentered[:, column])
U, d, Vh = np.linalg.linalg.svd(W.transpose())
S = np.matrix(np.identity(3))
if np.linalg.det(U) * np.linalg.det(Vh) < 0:
S[2, 2] = -1
rot = U * S * Vh
trans = data.mean(1).reshape((3, -1)) - rot * model.mean(1).reshape((3, -1))
model_aligned = rot * model + trans
alignment_error = model_aligned - data
trans_error = np.sqrt(np.sum(np.multiply(alignment_error, alignment_error), 0)).A[0]
return rot, trans, trans_error
def evaluate_ate(gt_traj, est_traj):
"""
Input :
gt_traj: list of 4x4 matrices
est_traj: list of 4x4 matrices
len(gt_traj) == len(est_traj)
"""
gt_traj_pts = [gt_traj[idx][:3, 3] for idx in range(len(gt_traj))]
est_traj_pts = [est_traj[idx][:3, 3] for idx in range(len(est_traj))]
gt_traj_pts = torch.stack(gt_traj_pts).detach().cpu().numpy().T
est_traj_pts = torch.stack(est_traj_pts).detach().cpu().numpy().T
_, _, trans_error = align(gt_traj_pts, est_traj_pts)
avg_trans_error = trans_error.mean()
return avg_trans_error
def build_pair_index(N, B=1):
"""
Build indices for all possible pairs of frames.
Args:
N: Number of frames
B: Batch size
Returns:
i1, i2: Indices for all possible pairs
"""
i1_, i2_ = torch.combinations(torch.arange(N), 2, with_replacement=False).unbind(-1)
i1, i2 = [(i[None] + torch.arange(B)[:, None] * N).reshape(-1) for i in [i1_, i2_]]
return i1, i2
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
"""
Returns torch.sqrt(torch.max(0, x))
but with a zero subgradient where x is 0.
"""
ret = torch.zeros_like(x)
positive_mask = x > 0
if torch.is_grad_enabled():
ret[positive_mask] = torch.sqrt(x[positive_mask])
else:
ret = torch.where(positive_mask, torch.sqrt(x), ret)
return ret
def mat_to_quat(matrix: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as rotation matrices to quaternions.
Args:
matrix: Rotation matrices as tensor of shape (..., 3, 3).
Returns:
quaternions with real part last, as tensor of shape (..., 4).
Quaternion Order: XYZW or say ijkr, scalar-last
"""
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
batch_dim = matrix.shape[:-2]
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
matrix.reshape(batch_dim + (9,)), dim=-1
)
q_abs = _sqrt_positive_part(
torch.stack(
[
1.0 + m00 + m11 + m22,
1.0 + m00 - m11 - m22,
1.0 - m00 + m11 - m22,
1.0 - m00 - m11 + m22,
],
dim=-1,
)
)
# we produce the desired quaternion multiplied by each of r, i, j, k
quat_by_rijk = torch.stack(
[
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
],
dim=-2,
)
# We floor here at 0.1 but the exact level is not important; if q_abs is small,
# the candidate won't be picked.
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))
# if not for numerical problems, quat_candidates[i] should be same (up to a sign),
# forall i; we pick the best-conditioned one (with the largest denominator)
out = quat_candidates[
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :
].reshape(batch_dim + (4,)) # pylint: disable=not-callable
# Convert from rijk to ijkr
out = out[..., [1, 2, 3, 0]]
out = standardize_quaternion(out)
return out
def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor:
"""
Convert a unit quaternion to a standard form: one in which the real
part is non negative.
Args:
quaternions: Quaternions with real part last,
as tensor of shape (..., 4).
Returns:
Standardized quaternions as tensor of shape (..., 4).
"""
return torch.where(quaternions[..., 3:4] < 0, -quaternions, quaternions)
def rotation_angle(rot_gt, rot_pred, batch_size=None, eps=1e-15):
"""
Calculate rotation angle error between ground truth and predicted rotations.
Args:
rot_gt: Ground truth rotation matrices
rot_pred: Predicted rotation matrices
batch_size: Batch size for reshaping the result
eps: Small value to avoid numerical issues
Returns:
Rotation angle error in degrees
"""
q_pred = mat_to_quat(rot_pred)
q_gt = mat_to_quat(rot_gt)
loss_q = (1 - (q_pred * q_gt).sum(dim=1) ** 2).clamp(min=eps)
err_q = torch.arccos(1 - 2 * loss_q)
rel_rangle_deg = err_q * 180 / np.pi
if batch_size is not None:
rel_rangle_deg = rel_rangle_deg.reshape(batch_size, -1)
return rel_rangle_deg
def translation_angle(tvec_gt, tvec_pred, batch_size=None, ambiguity=True):
"""
Calculate translation angle error between ground truth and predicted translations.
Args:
tvec_gt: Ground truth translation vectors
tvec_pred: Predicted translation vectors
batch_size: Batch size for reshaping the result
ambiguity: Whether to handle direction ambiguity
Returns:
Translation angle error in degrees
"""
rel_tangle_deg = compare_translation_by_angle(tvec_gt, tvec_pred)
rel_tangle_deg = rel_tangle_deg * 180.0 / np.pi
if ambiguity:
rel_tangle_deg = torch.min(rel_tangle_deg, (180 - rel_tangle_deg).abs())
if batch_size is not None:
rel_tangle_deg = rel_tangle_deg.reshape(batch_size, -1)
return rel_tangle_deg
def compare_translation_by_angle(t_gt, t, eps=1e-15, default_err=1e6):
"""
Normalize the translation vectors and compute the angle between them.
Args:
t_gt: Ground truth translation vectors
t: Predicted translation vectors
eps: Small value to avoid division by zero
default_err: Default error value for invalid cases
Returns:
Angular error between translation vectors in radians
"""
t_norm = torch.norm(t, dim=1, keepdim=True)
t = t / (t_norm + eps)
t_gt_norm = torch.norm(t_gt, dim=1, keepdim=True)
t_gt = t_gt / (t_gt_norm + eps)
loss_t = torch.clamp_min(1.0 - torch.sum(t * t_gt, dim=1) ** 2, eps)
err_t = torch.acos(torch.sqrt(1 - loss_t))
err_t[torch.isnan(err_t) | torch.isinf(err_t)] = default_err
return err_t
def calculate_auc_np(r_error, t_error, max_threshold=30):
"""
Calculate the Area Under the Curve (AUC) for the given error arrays using NumPy.
Args:
r_error: numpy array representing R error values (Degree)
t_error: numpy array representing T error values (Degree)
max_threshold: Maximum threshold value for binning the histogram
Returns:
AUC value and the normalized histogram
"""
error_matrix = np.concatenate((r_error[:, None], t_error[:, None]), axis=1)
max_errors = np.max(error_matrix, axis=1)
bins = np.arange(max_threshold + 1)
histogram, _ = np.histogram(max_errors, bins=bins)
num_pairs = float(len(max_errors))
normalized_histogram = histogram.astype(float) / num_pairs
return np.mean(np.cumsum(normalized_histogram)), normalized_histogram
def closed_form_inverse_se3(se3, R=None, T=None):
"""
Compute the inverse of each 4x4 (or 3x4) SE3 matrix in a batch.
If `R` and `T` are provided, they must correspond to the rotation and translation
components of `se3`. Otherwise, they will be extracted from `se3`.
Args:
se3: Nx4x4 or Nx3x4 array or tensor of SE3 matrices.
R (optional): Nx3x3 array or tensor of rotation matrices.
T (optional): Nx3x1 array or tensor of translation vectors.
Returns:
Inverted SE3 matrices with the same type and device as `se3`.
Shapes:
se3: (N, 4, 4)
R: (N, 3, 3)
T: (N, 3, 1)
"""
# Check if se3 is a numpy array or a torch tensor
is_numpy = isinstance(se3, np.ndarray)
# Validate shapes
if se3.shape[-2:] != (4, 4) and se3.shape[-2:] != (3, 4):
raise ValueError(f"se3 must be of shape (N,4,4), got {se3.shape}.")
# Extract R and T if not provided
if R is None:
R = se3[:, :3, :3] # (N,3,3)
if T is None:
T = se3[:, :3, 3:] # (N,3,1)
# Transpose R
if is_numpy:
# Compute the transpose of the rotation for NumPy
R_transposed = np.transpose(R, (0, 2, 1))
# -R^T t for NumPy
top_right = -np.matmul(R_transposed, T)
inverted_matrix = np.tile(np.eye(4), (len(R), 1, 1))
else:
R_transposed = R.transpose(1, 2) # (N,3,3)
top_right = -torch.bmm(R_transposed, T) # (N,3,1)
inverted_matrix = torch.eye(4, 4)[None].repeat(len(R), 1, 1)
inverted_matrix = inverted_matrix.to(R.dtype).to(R.device)
inverted_matrix[:, :3, :3] = R_transposed
inverted_matrix[:, :3, 3:] = top_right
return inverted_matrix
def se3_to_relative_pose_error(pred_se3, gt_se3, num_frames):
"""
Compute rotation and translation errors between predicted and ground truth poses.
Args:
pred_se3: Predicted SE(3) transformations
gt_se3: Ground truth SE(3) transformations
num_frames: Number of frames
Returns:
Rotation and translation angle errors in degrees
"""
pair_idx_i1, pair_idx_i2 = build_pair_index(num_frames)
# Compute relative camera poses between pairs
# We use closed_form_inverse to avoid potential numerical loss by torch.inverse()
relative_pose_gt = closed_form_inverse_se3(gt_se3[pair_idx_i1]).bmm(
gt_se3[pair_idx_i2]
)
relative_pose_pred = closed_form_inverse_se3(pred_se3[pair_idx_i1]).bmm(
pred_se3[pair_idx_i2]
)
# Compute the difference in rotation and translation
rel_rangle_deg = rotation_angle(
relative_pose_gt[:, :3, :3], relative_pose_pred[:, :3, :3]
)
rel_tangle_deg = translation_angle(
relative_pose_gt[:, :3, 3], relative_pose_pred[:, :3, 3]
)
return rel_rangle_deg, rel_tangle_deg
|