Spaces:
Running
Running
File size: 8,573 Bytes
37de32d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
"""
This utils script contains PORTAGE of wai-core camera methods for MapAnything.
"""
from typing import Any
import numpy as np
import torch
from scipy.spatial.transform import Rotation, Slerp
from mapanything.utils.wai.ops import get_dtype_device
# constants regarding camera models
PINHOLE_CAM_KEYS = ["fl_x", "fl_y", "cx", "cy", "h", "w"]
DISTORTION_PARAM_KEYS = [
"k1",
"k2",
"k3",
"k4",
"p1",
"p2",
] # order corresponds to the OpenCV convention
CAMERA_KEYS = PINHOLE_CAM_KEYS + DISTORTION_PARAM_KEYS
def interpolate_intrinsics(
frame1: dict[str, Any],
frame2: dict[str, Any],
alpha: float,
) -> dict[str, Any]:
"""
Interpolate camera intrinsics linearly.
Args:
frame1: The first frame dictionary.
frame2: The second frame dictionary.
alpha: Interpolation parameter. alpha = 0 for frame1, alpha = 1 for frame2.
Returns:
frame_inter: dictionary with new intrinsics.
"""
frame_inter = {}
for key in CAMERA_KEYS:
if key in frame1 and key in frame2:
p1 = frame1[key]
p2 = frame2[key]
frame_inter[key] = (1 - alpha) * p1 + alpha * p2
return frame_inter
def interpolate_extrinsics(
matrix1: list | np.ndarray | torch.Tensor,
matrix2: list | np.ndarray | torch.Tensor,
alpha: float,
) -> list | np.ndarray | torch.Tensor:
"""
Interpolate camera extrinsics 4x4 matrices using SLERP.
Args:
matrix1: The first matrix.
matrix2: The second matrix.
alpha: Interpolation parameter. alpha = 0 for matrix1, alpha = 1 for matrix2.
Returns:
matrix: 4x4 interpolated matrix, same type.
Raises:
ValueError: If different type.
"""
if not isinstance(matrix1, type(matrix2)):
raise ValueError("Both matrices should have the same type.")
dtype, device = get_dtype_device(matrix1)
if isinstance(matrix1, list):
mtype = "list"
matrix1 = np.array(matrix1)
matrix2 = np.array(matrix2)
elif isinstance(matrix1, np.ndarray):
mtype = "numpy"
elif isinstance(matrix1, torch.Tensor):
mtype = "torch"
matrix1 = matrix1.numpy()
matrix2 = matrix2.numpy()
else:
raise ValueError(
"Only list, numpy array and torch tensors are supported as inputs."
)
R1 = matrix1[:3, :3]
t1 = matrix1[:3, 3]
R2 = matrix2[:3, :3]
t2 = matrix2[:3, 3]
# interpolate translation
t = (1 - alpha) * t1 + alpha * t2
# interpolate rotations with SLERP
R1_quat = Rotation.from_matrix(R1).as_quat()
R2_quat = Rotation.from_matrix(R2).as_quat()
rotation_slerp = Slerp([0, 1], Rotation(np.stack([R1_quat, R2_quat])))
R = rotation_slerp(alpha).as_matrix()
matrix_inter = np.eye(4)
# combine together
matrix_inter[:3, :3] = R
matrix_inter[:3, 3] = t
if mtype == "list":
matrix_inter = matrix_inter.tolist()
elif mtype == "torch":
matrix_inter = torch.from_numpy(matrix_inter).to(dtype).to(device)
elif mtype == "numpy":
matrix_inter = matrix_inter.astype(dtype)
return matrix_inter
def convert_camera_coeffs_to_pinhole_matrix(
scene_meta, frame, fmt="torch"
) -> torch.Tensor | np.ndarray | list:
"""
Convert camera intrinsics from NeRFStudio format to a 3x3 intrinsics matrix.
Args:
scene_meta: Scene metadata containing camera parameters
frame: Frame-specific camera parameters that override scene_meta
Returns:
torch.Tensor: 3x3 camera intrinsics matrix
Raises:
ValueError: If camera model is not PINHOLE or if distortion coefficients are present
"""
# Check if camera model is supported
camera_model = frame.get("camera_model", scene_meta.get("camera_model"))
if camera_model != "PINHOLE":
raise ValueError("Only PINHOLE camera model supported")
# Check for unsupported distortion coefficients
if any(
(frame.get(coeff, 0) != 0) or (scene_meta.get(coeff, 0) != 0)
for coeff in DISTORTION_PARAM_KEYS
):
raise ValueError(
"Pinhole camera does not support radial/tangential distortion -> Undistort first"
)
# Extract camera intrinsic parameters
camera_coeffs = {}
for coeff in ["fl_x", "fl_y", "cx", "cy"]:
camera_coeffs[coeff] = frame.get(coeff, scene_meta.get(coeff))
if camera_coeffs[coeff] is None:
raise ValueError(f"Missing required camera parameter: {coeff}")
# Create intrinsics matrix
intrinsics = [
[camera_coeffs["fl_x"], 0.0, camera_coeffs["cx"]],
[0.0, camera_coeffs["fl_y"], camera_coeffs["cy"]],
[0.0, 0.0, 1.0],
]
if fmt == "torch":
intrinsics = torch.tensor(intrinsics)
elif fmt == "np":
intrinsics = np.array(intrinsics)
return intrinsics
def rotate_pinhole_90degcw(
W: int, H: int, fx: float, fy: float, cx: float, cy: float
) -> tuple[int, int, float, float, float, float]:
"""Rotates the intrinsics of a pinhole camera model by 90 degrees clockwise."""
W_new = H
H_new = W
fx_new = fy
fy_new = fx
cy_new = cx
cx_new = H - 1 - cy
return W_new, H_new, fx_new, fy_new, cx_new, cy_new
def _gl_cv_cmat() -> np.ndarray:
cmat = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
return cmat
def _apply_transformation(
c2ws: torch.Tensor | np.ndarray, cmat: np.ndarray
) -> torch.Tensor | np.ndarray:
"""
Convert camera poses using a provided conversion matrix.
Args:
c2ws (torch.Tensor or np.ndarray): Camera poses (batch_size, 4, 4) or (4, 4)
cmat (torch.Tensor or np.ndarray): Conversion matrix (4, 4)
Returns:
torch.Tensor or np.ndarray: Transformed camera poses (batch_size, 4, 4) or (4, 4)
"""
if isinstance(c2ws, torch.Tensor):
# Clone the input tensor to avoid modifying it in-place
c2ws_transformed = c2ws.clone()
# Apply the conversion matrix to the rotation part of the camera poses
if len(c2ws.shape) == 3:
c2ws_transformed[:, :3, :3] = c2ws_transformed[
:, :3, :3
] @ torch.from_numpy(cmat[:3, :3]).to(c2ws).unsqueeze(0)
else:
c2ws_transformed[:3, :3] = c2ws_transformed[:3, :3] @ torch.from_numpy(
cmat[:3, :3]
).to(c2ws)
elif isinstance(c2ws, np.ndarray):
# Clone the input array to avoid modifying it in-place
c2ws_transformed = c2ws.copy()
if len(c2ws.shape) == 3: # batched
# Apply the conversion matrix to the rotation part of the camera poses
c2ws_transformed[:, :3, :3] = np.einsum(
"ijk,lk->ijl", c2ws_transformed[:, :3, :3], cmat[:3, :3]
)
else: # single 4x4 matrix
# Apply the conversion matrix to the rotation part of the camera pose
c2ws_transformed[:3, :3] = np.dot(c2ws_transformed[:3, :3], cmat[:3, :3])
else:
raise ValueError("Input data type not supported.")
return c2ws_transformed
def gl2cv(
c2ws: torch.Tensor | np.ndarray,
return_cmat: bool = False,
) -> torch.Tensor | np.ndarray | tuple[torch.Tensor | np.ndarray, np.ndarray]:
"""
Convert camera poses from OpenGL to OpenCV coordinate system.
Args:
c2ws (torch.Tensor or np.ndarray): Camera poses (batch_size, 4, 4) or (4, 4)
return_cmat (bool): If True, return the conversion matrix along with the transformed poses
Returns:
torch.Tensor or np.ndarray: Transformed camera poses (batch_size, 4, 4) or (4, 4)
np.ndarray (optional): Conversion matrix if return_cmat is True
"""
cmat = _gl_cv_cmat()
if return_cmat:
return _apply_transformation(c2ws, cmat), cmat
return _apply_transformation(c2ws, cmat)
def intrinsics_to_fov(
fx: torch.Tensor, fy: torch.Tensor, h: torch.Tensor, w: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Compute the horizontal and vertical fields of view in radians from camera intrinsics.
Args:
fx (torch.Tensor): focal x
fy (torch.Tensor): focal y
h (torch.Tensor): Image height(s) with shape (B,).
w (torch.Tensor): Image width(s) with shape (B,).
Returns:
tuple[torch.Tensor, torch.Tensor]: A tuple containing the horizontal and vertical fields
of view in radians, both with shape (N,).
"""
return 2 * torch.atan((w / 2) / fx), 2 * torch.atan((h / 2) / fy)
|