""" Utils for Metrics Source for Pose AUC Metrics: VGGT """ import math import numpy as np import torch import torch.nn.functional as F def l2_distance_of_unit_quats_to_angular_error(l2_distance): """ Converts a given L2 distance (for unit quaternions) to the angular error in degrees. For two quaternions differing by an angle θ the relationship is: L2 distance = 2 * sin(θ/4) Hence, the angular error in degrees is computed as: 4 * asin(l2_distance / 2) * (180/π) Args: l2_distance: L2 distance between two unit quaternions (torch.Tensor, shape: (N,)) Returns: angular_error_degrees: Angular error in degrees (torch.Tensor, shape: (N,)) """ angular_error_radians = 4 * torch.asin(l2_distance / 2) angular_error_degrees = angular_error_radians * 180.0 / math.pi return angular_error_degrees def l2_distance_of_unit_ray_directions_to_angular_error(l2_distance): """ Converts a given L2 distance (for unit ray directions) to the angular error in degrees. For two unit ray directions differing by an angle θ the relationship is: L2 distance = 2 * sin(θ/2) Hence, the angular error in degrees is computed as: 2 * asin(l2_distance / 2) * (180/π) Args: l2_distance: L2 distance between two unit ray directions (torch.Tensor, shape: (N,)) Returns: angular_error_degrees: Angular error in degrees (torch.Tensor, shape: (N,)) """ angular_error_radians = 2 * torch.asin(l2_distance / 2) angular_error_degrees = angular_error_radians * 180.0 / math.pi return angular_error_degrees def valid_mean(arr, mask, axis=None, keepdims=np._NoValue): """Compute mean of elements across given dimensions of an array, considering only valid elements. Args: arr: The array to compute the mean. mask: Array with numerical or boolean values for element weights or validity. For bool, False means invalid. axis: Dimensions to reduce. keepdims: If true, retains reduced dimensions with length 1. Returns: Mean array/scalar and a valid array/scalar that indicates where the mean could be computed successfully. """ mask = mask.astype(arr.dtype) if mask.dtype == bool else mask num_valid = np.sum(mask, axis=axis, keepdims=keepdims) masked_arr = arr * mask masked_arr_sum = np.sum(masked_arr, axis=axis, keepdims=keepdims) with np.errstate(divide="ignore", invalid="ignore"): valid_mean = masked_arr_sum / num_valid is_valid = np.isfinite(valid_mean) valid_mean = np.nan_to_num(valid_mean, nan=0, posinf=0, neginf=0) return valid_mean, is_valid def thresh_inliers(gt, pred, thresh=1.03, mask=None, output_scaling_factor=1.0): """Computes the inlier (=error within a threshold) ratio for a predicted and ground truth dense map of size H x W x C. Args: gt: Ground truth depth map as numpy array of shape HxW. Negative or 0 values are invalid and ignored. pred: Predicted depth map as numpy array of shape HxW. thresh: Threshold for the relative difference between the prediction and ground truth. Default: 1.03 mask: Array of shape HxW with boolean values to indicate validity. For bool, False means invalid. Default: None output_scaling_factor: Scaling factor that is applied after computing the metrics (e.g. to get [%]). Default: 1 Returns: Scalar that indicates the inlier ratio. Scalar is np.nan if the result is invalid. """ # Compute the norms gt_norm = np.linalg.norm(gt, axis=-1) pred_norm = np.linalg.norm(pred, axis=-1) gt_norm_valid = (gt_norm) > 0 if mask is not None: combined_mask = mask & gt_norm_valid else: combined_mask = gt_norm_valid with np.errstate(divide="ignore", invalid="ignore"): rel_1 = np.nan_to_num( gt_norm / pred_norm, nan=thresh + 1, posinf=thresh + 1, neginf=thresh + 1 ) # pred=0 should be an outlier rel_2 = np.nan_to_num( pred_norm / gt_norm, nan=0, posinf=0, neginf=0 ) # gt=0 is masked out anyways max_rel = np.maximum(rel_1, rel_2) inliers = ((0 < max_rel) & (max_rel < thresh)).astype( np.float32 ) # 1 for inliers, 0 for outliers inlier_ratio, valid = valid_mean(inliers, combined_mask) inlier_ratio = inlier_ratio * output_scaling_factor inlier_ratio = inlier_ratio if valid else np.nan return inlier_ratio def m_rel_ae(gt, pred, mask=None, output_scaling_factor=1.0): """Computes the mean-relative-absolute-error for a predicted and ground truth dense map of size HxWxC. Args: gt: Ground truth map as numpy array of shape H x W x C. pred: Predicted map as numpy array of shape H x W x C. mask: Array of shape HxW with boolean values to indicate validity. For bool, False means invalid. Default: None output_scaling_factor: Scaling factor that is applied after computing the metrics (e.g. to get [%]). Default: 1 Returns: Scalar that indicates the mean-relative-absolute-error. Scalar is np.nan if the result is invalid. """ error_norm = np.linalg.norm(pred - gt, axis=-1) gt_norm = np.linalg.norm(gt, axis=-1) gt_norm_valid = (gt_norm) > 0 if mask is not None: combined_mask = mask & gt_norm_valid else: combined_mask = gt_norm_valid with np.errstate(divide="ignore", invalid="ignore"): rel_ae = np.nan_to_num(error_norm / gt_norm, nan=0, posinf=0, neginf=0) m_rel_ae, valid = valid_mean(rel_ae, combined_mask) m_rel_ae = m_rel_ae * output_scaling_factor m_rel_ae = m_rel_ae if valid else np.nan return m_rel_ae def align(model, data): """Align two trajectories using the method of Horn (closed-form). Args: model -- first trajectory (3xn) data -- second trajectory (3xn) Returns: rot -- rotation matrix (3x3) trans -- translation vector (3x1) trans_error -- translational error per point (1xn) """ np.set_printoptions(precision=3, suppress=True) model_zerocentered = model - model.mean(1).reshape((3, -1)) data_zerocentered = data - data.mean(1).reshape((3, -1)) W = np.zeros((3, 3)) for column in range(model.shape[1]): W += np.outer(model_zerocentered[:, column], data_zerocentered[:, column]) U, d, Vh = np.linalg.linalg.svd(W.transpose()) S = np.matrix(np.identity(3)) if np.linalg.det(U) * np.linalg.det(Vh) < 0: S[2, 2] = -1 rot = U * S * Vh trans = data.mean(1).reshape((3, -1)) - rot * model.mean(1).reshape((3, -1)) model_aligned = rot * model + trans alignment_error = model_aligned - data trans_error = np.sqrt(np.sum(np.multiply(alignment_error, alignment_error), 0)).A[0] return rot, trans, trans_error def evaluate_ate(gt_traj, est_traj): """ Input : gt_traj: list of 4x4 matrices est_traj: list of 4x4 matrices len(gt_traj) == len(est_traj) """ gt_traj_pts = [gt_traj[idx][:3, 3] for idx in range(len(gt_traj))] est_traj_pts = [est_traj[idx][:3, 3] for idx in range(len(est_traj))] gt_traj_pts = torch.stack(gt_traj_pts).detach().cpu().numpy().T est_traj_pts = torch.stack(est_traj_pts).detach().cpu().numpy().T _, _, trans_error = align(gt_traj_pts, est_traj_pts) avg_trans_error = trans_error.mean() return avg_trans_error def build_pair_index(N, B=1): """ Build indices for all possible pairs of frames. Args: N: Number of frames B: Batch size Returns: i1, i2: Indices for all possible pairs """ i1_, i2_ = torch.combinations(torch.arange(N), 2, with_replacement=False).unbind(-1) i1, i2 = [(i[None] + torch.arange(B)[:, None] * N).reshape(-1) for i in [i1_, i2_]] return i1, i2 def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor: """ Returns torch.sqrt(torch.max(0, x)) but with a zero subgradient where x is 0. """ ret = torch.zeros_like(x) positive_mask = x > 0 if torch.is_grad_enabled(): ret[positive_mask] = torch.sqrt(x[positive_mask]) else: ret = torch.where(positive_mask, torch.sqrt(x), ret) return ret def mat_to_quat(matrix: torch.Tensor) -> torch.Tensor: """ Convert rotations given as rotation matrices to quaternions. Args: matrix: Rotation matrices as tensor of shape (..., 3, 3). Returns: quaternions with real part last, as tensor of shape (..., 4). Quaternion Order: XYZW or say ijkr, scalar-last """ if matrix.size(-1) != 3 or matrix.size(-2) != 3: raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") batch_dim = matrix.shape[:-2] m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind( matrix.reshape(batch_dim + (9,)), dim=-1 ) q_abs = _sqrt_positive_part( torch.stack( [ 1.0 + m00 + m11 + m22, 1.0 + m00 - m11 - m22, 1.0 - m00 + m11 - m22, 1.0 - m00 - m11 + m22, ], dim=-1, ) ) # we produce the desired quaternion multiplied by each of r, i, j, k quat_by_rijk = torch.stack( [ # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and # `int`. torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1), ], dim=-2, ) # We floor here at 0.1 but the exact level is not important; if q_abs is small, # the candidate won't be picked. flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device) quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr)) # if not for numerical problems, quat_candidates[i] should be same (up to a sign), # forall i; we pick the best-conditioned one (with the largest denominator) out = quat_candidates[ F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, : ].reshape(batch_dim + (4,)) # pylint: disable=not-callable # Convert from rijk to ijkr out = out[..., [1, 2, 3, 0]] out = standardize_quaternion(out) return out def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor: """ Convert a unit quaternion to a standard form: one in which the real part is non negative. Args: quaternions: Quaternions with real part last, as tensor of shape (..., 4). Returns: Standardized quaternions as tensor of shape (..., 4). """ return torch.where(quaternions[..., 3:4] < 0, -quaternions, quaternions) def rotation_angle(rot_gt, rot_pred, batch_size=None, eps=1e-15): """ Calculate rotation angle error between ground truth and predicted rotations. Args: rot_gt: Ground truth rotation matrices rot_pred: Predicted rotation matrices batch_size: Batch size for reshaping the result eps: Small value to avoid numerical issues Returns: Rotation angle error in degrees """ q_pred = mat_to_quat(rot_pred) q_gt = mat_to_quat(rot_gt) loss_q = (1 - (q_pred * q_gt).sum(dim=1) ** 2).clamp(min=eps) err_q = torch.arccos(1 - 2 * loss_q) rel_rangle_deg = err_q * 180 / np.pi if batch_size is not None: rel_rangle_deg = rel_rangle_deg.reshape(batch_size, -1) return rel_rangle_deg def translation_angle(tvec_gt, tvec_pred, batch_size=None, ambiguity=True): """ Calculate translation angle error between ground truth and predicted translations. Args: tvec_gt: Ground truth translation vectors tvec_pred: Predicted translation vectors batch_size: Batch size for reshaping the result ambiguity: Whether to handle direction ambiguity Returns: Translation angle error in degrees """ rel_tangle_deg = compare_translation_by_angle(tvec_gt, tvec_pred) rel_tangle_deg = rel_tangle_deg * 180.0 / np.pi if ambiguity: rel_tangle_deg = torch.min(rel_tangle_deg, (180 - rel_tangle_deg).abs()) if batch_size is not None: rel_tangle_deg = rel_tangle_deg.reshape(batch_size, -1) return rel_tangle_deg def compare_translation_by_angle(t_gt, t, eps=1e-15, default_err=1e6): """ Normalize the translation vectors and compute the angle between them. Args: t_gt: Ground truth translation vectors t: Predicted translation vectors eps: Small value to avoid division by zero default_err: Default error value for invalid cases Returns: Angular error between translation vectors in radians """ t_norm = torch.norm(t, dim=1, keepdim=True) t = t / (t_norm + eps) t_gt_norm = torch.norm(t_gt, dim=1, keepdim=True) t_gt = t_gt / (t_gt_norm + eps) loss_t = torch.clamp_min(1.0 - torch.sum(t * t_gt, dim=1) ** 2, eps) err_t = torch.acos(torch.sqrt(1 - loss_t)) err_t[torch.isnan(err_t) | torch.isinf(err_t)] = default_err return err_t def calculate_auc_np(r_error, t_error, max_threshold=30): """ Calculate the Area Under the Curve (AUC) for the given error arrays using NumPy. Args: r_error: numpy array representing R error values (Degree) t_error: numpy array representing T error values (Degree) max_threshold: Maximum threshold value for binning the histogram Returns: AUC value and the normalized histogram """ error_matrix = np.concatenate((r_error[:, None], t_error[:, None]), axis=1) max_errors = np.max(error_matrix, axis=1) bins = np.arange(max_threshold + 1) histogram, _ = np.histogram(max_errors, bins=bins) num_pairs = float(len(max_errors)) normalized_histogram = histogram.astype(float) / num_pairs return np.mean(np.cumsum(normalized_histogram)), normalized_histogram def closed_form_inverse_se3(se3, R=None, T=None): """ Compute the inverse of each 4x4 (or 3x4) SE3 matrix in a batch. If `R` and `T` are provided, they must correspond to the rotation and translation components of `se3`. Otherwise, they will be extracted from `se3`. Args: se3: Nx4x4 or Nx3x4 array or tensor of SE3 matrices. R (optional): Nx3x3 array or tensor of rotation matrices. T (optional): Nx3x1 array or tensor of translation vectors. Returns: Inverted SE3 matrices with the same type and device as `se3`. Shapes: se3: (N, 4, 4) R: (N, 3, 3) T: (N, 3, 1) """ # Check if se3 is a numpy array or a torch tensor is_numpy = isinstance(se3, np.ndarray) # Validate shapes if se3.shape[-2:] != (4, 4) and se3.shape[-2:] != (3, 4): raise ValueError(f"se3 must be of shape (N,4,4), got {se3.shape}.") # Extract R and T if not provided if R is None: R = se3[:, :3, :3] # (N,3,3) if T is None: T = se3[:, :3, 3:] # (N,3,1) # Transpose R if is_numpy: # Compute the transpose of the rotation for NumPy R_transposed = np.transpose(R, (0, 2, 1)) # -R^T t for NumPy top_right = -np.matmul(R_transposed, T) inverted_matrix = np.tile(np.eye(4), (len(R), 1, 1)) else: R_transposed = R.transpose(1, 2) # (N,3,3) top_right = -torch.bmm(R_transposed, T) # (N,3,1) inverted_matrix = torch.eye(4, 4)[None].repeat(len(R), 1, 1) inverted_matrix = inverted_matrix.to(R.dtype).to(R.device) inverted_matrix[:, :3, :3] = R_transposed inverted_matrix[:, :3, 3:] = top_right return inverted_matrix def se3_to_relative_pose_error(pred_se3, gt_se3, num_frames): """ Compute rotation and translation errors between predicted and ground truth poses. Args: pred_se3: Predicted SE(3) transformations gt_se3: Ground truth SE(3) transformations num_frames: Number of frames Returns: Rotation and translation angle errors in degrees """ pair_idx_i1, pair_idx_i2 = build_pair_index(num_frames) # Compute relative camera poses between pairs # We use closed_form_inverse to avoid potential numerical loss by torch.inverse() relative_pose_gt = closed_form_inverse_se3(gt_se3[pair_idx_i1]).bmm( gt_se3[pair_idx_i2] ) relative_pose_pred = closed_form_inverse_se3(pred_se3[pair_idx_i1]).bmm( pred_se3[pair_idx_i2] ) # Compute the difference in rotation and translation rel_rangle_deg = rotation_angle( relative_pose_gt[:, :3, :3], relative_pose_pred[:, :3, :3] ) rel_tangle_deg = translation_angle( relative_pose_gt[:, :3, 3], relative_pose_pred[:, :3, 3] ) return rel_rangle_deg, rel_tangle_deg