Spaces:
Runtime error
Runtime error
Sigrid De los Santos
commited on
Commit
Β·
c319a1e
1
Parent(s):
4b24cc9
App is ready
Browse files- app.py +53 -25
- src/main.py +2 -2
app.py
CHANGED
|
@@ -2,10 +2,12 @@ import os
|
|
| 2 |
import sys
|
| 3 |
import tempfile
|
| 4 |
import time
|
|
|
|
| 5 |
import streamlit as st
|
| 6 |
import pandas as pd
|
| 7 |
import requests
|
| 8 |
import openai
|
|
|
|
| 9 |
|
| 10 |
# Add 'src' to Python path
|
| 11 |
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
|
|
@@ -56,24 +58,40 @@ if submitted:
|
|
| 56 |
spinner_box = st.empty()
|
| 57 |
log_box = st.empty()
|
| 58 |
logs = []
|
|
|
|
| 59 |
|
| 60 |
def log(msg):
|
| 61 |
logs.append(msg)
|
| 62 |
log_box.code("\n".join(logs))
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
|
|
|
|
| 68 |
try:
|
| 69 |
client = openai.OpenAI(api_key=openai_api_key)
|
| 70 |
client.models.list()
|
| 71 |
log("β
OpenAI API key is valid.")
|
| 72 |
except Exception as e:
|
| 73 |
log(f"β OpenAI API Key Error: {e}")
|
|
|
|
|
|
|
| 74 |
st.stop()
|
| 75 |
|
| 76 |
-
# === Check Tavily Key ===
|
| 77 |
try:
|
| 78 |
response = requests.post(
|
| 79 |
"https://api.tavily.com/search",
|
|
@@ -84,50 +102,58 @@ if submitted:
|
|
| 84 |
log("β
Tavily API key is valid.")
|
| 85 |
else:
|
| 86 |
log(f"β Tavily Key Error: {response.status_code} {response.text}")
|
|
|
|
|
|
|
| 87 |
st.stop()
|
| 88 |
except Exception as e:
|
| 89 |
log(f"β Tavily API Key Error: {e}")
|
|
|
|
|
|
|
| 90 |
st.stop()
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
| 94 |
spinner_box.success("β
Analysis complete!")
|
| 95 |
|
| 96 |
# === Report Tab ===
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
# === Articles Tab ===
|
| 100 |
with tab_report:
|
|
|
|
| 101 |
if html_paths:
|
| 102 |
-
# Add one button to download the latest report
|
| 103 |
latest_report = html_paths[-1]
|
| 104 |
with open(latest_report, 'r', encoding='utf-8') as f:
|
| 105 |
html_content = f.read()
|
| 106 |
|
|
|
|
| 107 |
st.download_button(
|
| 108 |
-
label=
|
| 109 |
data=html_content,
|
| 110 |
file_name=os.path.basename(latest_report),
|
| 111 |
mime="text/html"
|
| 112 |
)
|
| 113 |
|
| 114 |
-
# Display the report
|
| 115 |
st.components.v1.html(html_content, height=600, scrolling=True)
|
| 116 |
else:
|
| 117 |
st.error("β No reports were generated.")
|
| 118 |
-
|
| 119 |
-
#
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
# === Insights Tab ===
|
| 133 |
with tab_insights:
|
|
@@ -144,6 +170,8 @@ if submitted:
|
|
| 144 |
st.info("No insights available.")
|
| 145 |
|
| 146 |
except Exception as e:
|
|
|
|
|
|
|
| 147 |
spinner_box.error("β Failed.")
|
| 148 |
log_box.error(f"β Error: {e}")
|
| 149 |
|
|
|
|
| 2 |
import sys
|
| 3 |
import tempfile
|
| 4 |
import time
|
| 5 |
+
import itertools
|
| 6 |
import streamlit as st
|
| 7 |
import pandas as pd
|
| 8 |
import requests
|
| 9 |
import openai
|
| 10 |
+
from threading import Thread
|
| 11 |
|
| 12 |
# Add 'src' to Python path
|
| 13 |
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
|
|
|
|
| 58 |
spinner_box = st.empty()
|
| 59 |
log_box = st.empty()
|
| 60 |
logs = []
|
| 61 |
+
rotating = True
|
| 62 |
|
| 63 |
def log(msg):
|
| 64 |
logs.append(msg)
|
| 65 |
log_box.code("\n".join(logs))
|
| 66 |
|
| 67 |
+
# === Rotating UI Messages ===
|
| 68 |
+
def rotating_messages():
|
| 69 |
+
messages = itertools.cycle([
|
| 70 |
+
"π Searching financial news...",
|
| 71 |
+
"π§ Running AI analysis...",
|
| 72 |
+
"π Evaluating sentiment...",
|
| 73 |
+
"π Generating report...",
|
| 74 |
+
"πΉ Finalizing insights..."
|
| 75 |
+
])
|
| 76 |
+
while rotating:
|
| 77 |
+
spinner_box.markdown(f"β³ {next(messages)}")
|
| 78 |
+
time.sleep(1.5)
|
| 79 |
+
|
| 80 |
+
rotator_thread = Thread(target=rotating_messages)
|
| 81 |
+
rotator_thread.start()
|
| 82 |
|
| 83 |
+
try:
|
| 84 |
+
# Check API Keys
|
| 85 |
try:
|
| 86 |
client = openai.OpenAI(api_key=openai_api_key)
|
| 87 |
client.models.list()
|
| 88 |
log("β
OpenAI API key is valid.")
|
| 89 |
except Exception as e:
|
| 90 |
log(f"β OpenAI API Key Error: {e}")
|
| 91 |
+
rotating = False
|
| 92 |
+
rotator_thread.join()
|
| 93 |
st.stop()
|
| 94 |
|
|
|
|
| 95 |
try:
|
| 96 |
response = requests.post(
|
| 97 |
"https://api.tavily.com/search",
|
|
|
|
| 102 |
log("β
Tavily API key is valid.")
|
| 103 |
else:
|
| 104 |
log(f"β Tavily Key Error: {response.status_code} {response.text}")
|
| 105 |
+
rotating = False
|
| 106 |
+
rotator_thread.join()
|
| 107 |
st.stop()
|
| 108 |
except Exception as e:
|
| 109 |
log(f"β Tavily API Key Error: {e}")
|
| 110 |
+
rotating = False
|
| 111 |
+
rotator_thread.join()
|
| 112 |
st.stop()
|
| 113 |
|
| 114 |
+
with st.spinner("β³ Running analysis..."):
|
| 115 |
+
html_paths, articles_df, insights_df = run_pipeline(csv_path, tavily_api_key, progress_callback=log)
|
| 116 |
+
|
| 117 |
+
rotating = False
|
| 118 |
+
rotator_thread.join()
|
| 119 |
spinner_box.success("β
Analysis complete!")
|
| 120 |
|
| 121 |
# === Report Tab ===
|
|
|
|
|
|
|
|
|
|
| 122 |
with tab_report:
|
| 123 |
+
st.subheader("π Latest Report")
|
| 124 |
if html_paths:
|
|
|
|
| 125 |
latest_report = html_paths[-1]
|
| 126 |
with open(latest_report, 'r', encoding='utf-8') as f:
|
| 127 |
html_content = f.read()
|
| 128 |
|
| 129 |
+
# Download button for HTML report
|
| 130 |
st.download_button(
|
| 131 |
+
label="β¬οΈ Download Report (HTML)",
|
| 132 |
data=html_content,
|
| 133 |
file_name=os.path.basename(latest_report),
|
| 134 |
mime="text/html"
|
| 135 |
)
|
| 136 |
|
|
|
|
| 137 |
st.components.v1.html(html_content, height=600, scrolling=True)
|
| 138 |
else:
|
| 139 |
st.error("β No reports were generated.")
|
| 140 |
+
|
| 141 |
+
# === Articles Tab ===
|
| 142 |
+
with tab_articles:
|
| 143 |
+
st.subheader("π Articles Table")
|
| 144 |
+
if not articles_df.empty:
|
| 145 |
+
st.dataframe(
|
| 146 |
+
articles_df[["Title", "URL", "Priority", "Sentiment", "Confidence", "Signal", "Date"]],
|
| 147 |
+
use_container_width=True
|
| 148 |
+
)
|
| 149 |
+
st.download_button(
|
| 150 |
+
label="β¬οΈ Download Articles CSV",
|
| 151 |
+
data=articles_df.to_csv(index=False).encode("utf-8"),
|
| 152 |
+
file_name="articles.csv",
|
| 153 |
+
mime="text/csv"
|
| 154 |
+
)
|
| 155 |
+
else:
|
| 156 |
+
st.info("No articles available.")
|
| 157 |
|
| 158 |
# === Insights Tab ===
|
| 159 |
with tab_insights:
|
|
|
|
| 170 |
st.info("No insights available.")
|
| 171 |
|
| 172 |
except Exception as e:
|
| 173 |
+
rotating = False
|
| 174 |
+
rotator_thread.join()
|
| 175 |
spinner_box.error("β Failed.")
|
| 176 |
log_box.error(f"β Error: {e}")
|
| 177 |
|
src/main.py
CHANGED
|
@@ -45,8 +45,8 @@ def run_value_investing_analysis(csv_path, progress_callback=None):
|
|
| 45 |
for _, row in current_df.iterrows():
|
| 46 |
topic = row.get("topic")
|
| 47 |
timespan = row.get("timespan_days", 7)
|
| 48 |
-
if progress_callback:
|
| 49 |
-
|
| 50 |
# try:
|
| 51 |
# news = fetch_deep_news(topic, timespan)
|
| 52 |
# if progress_callback:
|
|
|
|
| 45 |
for _, row in current_df.iterrows():
|
| 46 |
topic = row.get("topic")
|
| 47 |
timespan = row.get("timespan_days", 7)
|
| 48 |
+
# if progress_callback:
|
| 49 |
+
# progress_callback(f"π Processing topic: {topic} ({timespan} days)")
|
| 50 |
# try:
|
| 51 |
# news = fetch_deep_news(topic, timespan)
|
| 52 |
# if progress_callback:
|