Spaces:
Runtime error
Runtime error
| import math | |
| from typing import Optional | |
| import torch | |
| import torch.nn as nn | |
| from shap_e.models.nn.checkpoint import checkpoint | |
| from .transformer import MLP, Transformer, init_linear | |
| from .util import timestep_embedding | |
| class MultiheadCrossAttention(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| device: torch.device, | |
| dtype: torch.dtype, | |
| n_ctx: int, | |
| n_data: int, | |
| width: int, | |
| heads: int, | |
| init_scale: float, | |
| data_width: Optional[int] = None, | |
| ): | |
| super().__init__() | |
| self.n_ctx = n_ctx | |
| self.n_data = n_data | |
| self.width = width | |
| self.heads = heads | |
| self.data_width = width if data_width is None else data_width | |
| self.c_q = nn.Linear(width, width, device=device, dtype=dtype) | |
| self.c_kv = nn.Linear(self.data_width, width * 2, device=device, dtype=dtype) | |
| self.c_proj = nn.Linear(width, width, device=device, dtype=dtype) | |
| self.attention = QKVMultiheadCrossAttention( | |
| device=device, dtype=dtype, heads=heads, n_ctx=n_ctx, n_data=n_data | |
| ) | |
| init_linear(self.c_q, init_scale) | |
| init_linear(self.c_kv, init_scale) | |
| init_linear(self.c_proj, init_scale) | |
| def forward(self, x, data): | |
| x = self.c_q(x) | |
| data = self.c_kv(data) | |
| x = checkpoint(self.attention, (x, data), (), True) | |
| x = self.c_proj(x) | |
| return x | |
| class QKVMultiheadCrossAttention(nn.Module): | |
| def __init__( | |
| self, *, device: torch.device, dtype: torch.dtype, heads: int, n_ctx: int, n_data: int | |
| ): | |
| super().__init__() | |
| self.device = device | |
| self.dtype = dtype | |
| self.heads = heads | |
| self.n_ctx = n_ctx | |
| self.n_data = n_data | |
| def forward(self, q, kv): | |
| _, n_ctx, _ = q.shape | |
| bs, n_data, width = kv.shape | |
| attn_ch = width // self.heads // 2 | |
| scale = 1 / math.sqrt(math.sqrt(attn_ch)) | |
| q = q.view(bs, n_ctx, self.heads, -1) | |
| kv = kv.view(bs, n_data, self.heads, -1) | |
| k, v = torch.split(kv, attn_ch, dim=-1) | |
| weight = torch.einsum( | |
| "bthc,bshc->bhts", q * scale, k * scale | |
| ) # More stable with f16 than dividing afterwards | |
| wdtype = weight.dtype | |
| weight = torch.softmax(weight.float(), dim=-1).type(wdtype) | |
| return torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1) | |
| class ResidualCrossAttentionBlock(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| device: torch.device, | |
| dtype: torch.dtype, | |
| n_ctx: int, | |
| n_data: int, | |
| width: int, | |
| heads: int, | |
| data_width: Optional[int] = None, | |
| init_scale: float = 1.0, | |
| ): | |
| super().__init__() | |
| if data_width is None: | |
| data_width = width | |
| self.attn = MultiheadCrossAttention( | |
| device=device, | |
| dtype=dtype, | |
| n_ctx=n_ctx, | |
| n_data=n_data, | |
| width=width, | |
| heads=heads, | |
| data_width=data_width, | |
| init_scale=init_scale, | |
| ) | |
| self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype) | |
| self.ln_2 = nn.LayerNorm(data_width, device=device, dtype=dtype) | |
| self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale) | |
| self.ln_3 = nn.LayerNorm(width, device=device, dtype=dtype) | |
| def forward(self, x: torch.Tensor, data: torch.Tensor): | |
| x = x + self.attn(self.ln_1(x), self.ln_2(data)) | |
| x = x + self.mlp(self.ln_3(x)) | |
| return x | |
| class SimplePerceiver(nn.Module): | |
| """ | |
| Only does cross attention | |
| """ | |
| def __init__( | |
| self, | |
| *, | |
| device: torch.device, | |
| dtype: torch.dtype, | |
| n_ctx: int, | |
| n_data: int, | |
| width: int, | |
| layers: int, | |
| heads: int, | |
| init_scale: float = 0.25, | |
| data_width: Optional[int] = None, | |
| ): | |
| super().__init__() | |
| self.n_ctx = n_ctx | |
| self.width = width | |
| self.layers = layers | |
| init_scale = init_scale * math.sqrt(1.0 / width) | |
| self.resblocks = nn.ModuleList( | |
| [ | |
| ResidualCrossAttentionBlock( | |
| device=device, | |
| dtype=dtype, | |
| n_ctx=n_ctx, | |
| n_data=n_data, | |
| width=width, | |
| heads=heads, | |
| init_scale=init_scale, | |
| data_width=data_width, | |
| ) | |
| for _ in range(layers) | |
| ] | |
| ) | |
| def forward(self, x: torch.Tensor, data: torch.Tensor): | |
| for block in self.resblocks: | |
| x = block(x, data) | |
| return x | |
| class PointDiffusionPerceiver(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| device: torch.device, | |
| dtype: torch.dtype, | |
| input_channels: int = 3, | |
| output_channels: int = 3, | |
| n_ctx: int = 1024, | |
| n_latent: int = 128, | |
| width: int = 512, | |
| encoder_layers: int = 12, | |
| latent_layers: int = 12, | |
| decoder_layers: int = 12, | |
| heads: int = 8, | |
| init_scale: float = 0.25, | |
| ): | |
| super().__init__() | |
| self.time_embed = MLP( | |
| device=device, dtype=dtype, width=width, init_scale=init_scale * math.sqrt(1.0 / width) | |
| ) | |
| self.latent_embed = MLP( | |
| device=device, dtype=dtype, width=width, init_scale=init_scale * math.sqrt(1.0 / width) | |
| ) | |
| self.n_latent = n_latent | |
| self.ln_pre = nn.LayerNorm(width, device=device, dtype=dtype) | |
| self.encoder = SimplePerceiver( | |
| device=device, | |
| dtype=dtype, | |
| n_ctx=n_latent, | |
| n_data=n_ctx, | |
| width=width, | |
| layers=encoder_layers, | |
| heads=heads, | |
| init_scale=init_scale, | |
| ) | |
| self.processor = Transformer( | |
| device=device, | |
| dtype=dtype, | |
| n_ctx=n_latent, | |
| width=width, | |
| layers=latent_layers, | |
| heads=heads, | |
| init_scale=init_scale, | |
| ) | |
| self.decoder = SimplePerceiver( | |
| device=device, | |
| dtype=dtype, | |
| n_ctx=n_ctx, | |
| n_data=n_latent, | |
| width=width, | |
| layers=decoder_layers, | |
| heads=heads, | |
| init_scale=init_scale, | |
| ) | |
| self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype) | |
| self.input_proj = nn.Linear(input_channels, width, device=device, dtype=dtype) | |
| self.output_proj = nn.Linear(width, output_channels, device=device, dtype=dtype) | |
| with torch.no_grad(): | |
| self.output_proj.weight.zero_() | |
| self.output_proj.bias.zero_() | |
| def forward(self, x: torch.Tensor, t: torch.Tensor): | |
| """ | |
| :param x: an [N x C x T] tensor. | |
| :param t: an [N] tensor. | |
| :return: an [N x C' x T] tensor. | |
| """ | |
| assert x.shape[-1] == self.decoder.n_ctx | |
| t_embed = self.time_embed(timestep_embedding(t, self.encoder.width)) | |
| data = self.input_proj(x.permute(0, 2, 1)) + t_embed[:, None] | |
| data = self.ln_pre(data) | |
| l = torch.arange(self.n_latent).to(x.device) | |
| h = self.latent_embed(timestep_embedding(l, self.decoder.width)) | |
| h = h.unsqueeze(0).repeat(x.shape[0], 1, 1) | |
| h = self.encoder(h, data) | |
| h = self.processor(h) | |
| h = self.decoder(data, h) | |
| h = self.ln_post(h) | |
| h = self.output_proj(h) | |
| return h.permute(0, 2, 1) | |