File size: 18,661 Bytes
10e9b7d
 
4c934c3
 
1968b68
43ab812
91f5922
151223b
30b3077
151223b
 
 
4c934c3
30b3077
9925072
151223b
 
 
0dd84e4
 
151223b
0dd84e4
 
151223b
0dd84e4
91f5922
 
151223b
 
 
 
 
 
 
 
 
 
 
 
30b3077
151223b
91f5922
 
 
 
151223b
 
 
0dd84e4
 
151223b
 
0dd84e4
 
151223b
0dd84e4
30b3077
151223b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30b3077
151223b
0c36fa7
30b3077
151223b
 
 
 
 
 
0dd84e4
 
151223b
0dd84e4
151223b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94d642e
30b3077
151223b
 
 
0dd84e4
 
151223b
0dd84e4
 
151223b
0dd84e4
151223b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
012ef3f
151223b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dd84e4
151223b
 
012ef3f
151223b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94d642e
 
151223b
 
 
 
 
 
 
 
 
 
30b3077
16da5cd
151223b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16da5cd
151223b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30b3077
151223b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326bc46
 
151223b
 
94d642e
151223b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94d642e
151223b
 
91f5922
 
151223b
 
 
 
94d642e
151223b
0c36fa7
151223b
 
 
 
94d642e
0c36fa7
151223b
0c36fa7
94d642e
30b3077
151223b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94d642e
151223b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94d642e
d7c91b6
151223b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30b3077
151223b
30b3077
151223b
 
30b3077
151223b
 
 
 
 
 
 
30b3077
94d642e
 
151223b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import ToolCallingAgent, tool
from duckduckgo_search import DDGS
import math
import openai
import re
import json
from datetime import datetime, timedelta
import time

# --- Enhanced Tools ---
@tool
def duck_search(query: str) -> str:
    """
    Searches the web using DuckDuckGo and returns detailed information.
    
    Args:
        query: The search query string.
    
    Returns:
        A string with comprehensive search results including titles, snippets, and URLs.
    """
    try:
        with DDGS() as ddgs:
            results = ddgs.text(query, max_results=5)  # Increased results
            if not results:
                return "No results found."
            
            formatted_results = []
            for i, r in enumerate(results, 1):
                formatted_results.append(
                    f"Result {i}:\n"
                    f"Title: {r['title']}\n"
                    f"Content: {r['body']}\n"
                    f"URL: {r['href']}\n"
                    f"---"
                )
            return "\n".join(formatted_results)
    except Exception as e:
        return f"Search error: {e}"

@tool
def focused_search(query: str, topic: str = "") -> str:
    """
    Performs a more focused search with specific keywords for better results.
    
    Args:
        query: The main search query
        topic: Additional topic context to improve search accuracy
    
    Returns:
        Focused search results
    """
    try:
        # Enhance query with topic context
        enhanced_query = f"{query} {topic}".strip()
        
        with DDGS() as ddgs:
            results = ddgs.text(enhanced_query, max_results=3)
            if not results:
                # Try alternative search if no results
                results = ddgs.text(query, max_results=3)
            
            if not results:
                return "No results found for focused search."
            
            summaries = []
            for r in results:
                summaries.append(f"**{r['title']}**\n{r['body']}\nSource: {r['href']}")
            
            return "\n\n".join(summaries)
    except Exception as e:
        return f"Focused search error: {e}"

@tool
def advanced_calculator(expression: str) -> str:
    """
    Enhanced calculator with support for complex mathematical operations.
    
    Args:
        expression: A mathematical expression or calculation
    
    Returns:
        The calculated result with detailed steps when possible
    """
    try:
        # Clean the expression
        expression = expression.strip()
        
        # Handle common mathematical functions and constants
        safe_dict = {
            "__builtins__": {},
            **math.__dict__,
            "abs": abs,
            "round": round,
            "min": min,
            "max": max,
            "sum": sum,
            "pow": pow,
        }
        
        # Try to evaluate the expression
        result = eval(expression, safe_dict)
        
        # Format the result nicely
        if isinstance(result, float):
            if result.is_integer():
                return str(int(result))
            else:
                return f"{result:.10g}"  # Remove trailing zeros
        
        return str(result)
        
    except Exception as e:
        # Try to handle percentage calculations
        if "%" in expression:
            try:
                # Convert percentage expressions
                expr_mod = expression.replace("%", "/100")
                result = eval(expr_mod, safe_dict)
                return str(result)
            except:
                pass
        
        return f"Calculation error: {e}. Please check the mathematical expression."

@tool
def date_calculator(date_expression: str) -> str:
    """
    Calculates dates, time differences, and handles date-related queries.
    
    Args:
        date_expression: A date calculation or query
    
    Returns:
        The calculated date or time difference
    """
    try:
        current_date = datetime.now()
        
        # Handle relative date expressions
        if "days ago" in date_expression.lower():
            days_match = re.search(r'(\d+)\s*days?\s*ago', date_expression.lower())
            if days_match:
                days = int(days_match.group(1))
                target_date = current_date - timedelta(days=days)
                return target_date.strftime("%Y-%m-%d (%A)")
        
        elif "days from now" in date_expression.lower():
            days_match = re.search(r'(\d+)\s*days?\s*from\s*now', date_expression.lower())
            if days_match:
                days = int(days_match.group(1))
                target_date = current_date + timedelta(days=days)
                return target_date.strftime("%Y-%m-%d (%A)")
        
        elif "weeks ago" in date_expression.lower():
            weeks_match = re.search(r'(\d+)\s*weeks?\s*ago', date_expression.lower())
            if weeks_match:
                weeks = int(weeks_match.group(1))
                target_date = current_date - timedelta(weeks=weeks)
                return target_date.strftime("%Y-%m-%d (%A)")
        
        # Current date info
        elif "today" in date_expression.lower() or "current date" in date_expression.lower():
            return current_date.strftime("%Y-%m-%d (%A)")
        
        return f"Current date: {current_date.strftime('%Y-%m-%d (%A)')}"
        
    except Exception as e:
        return f"Date calculation error: {e}"

@tool
def text_analyzer(text: str) -> str:
    """
    Analyzes text for patterns, extracts information, and provides insights.
    
    Args:
        text: The text to analyze
    
    Returns:
        Analysis results including word count, patterns, and extracted information
    """
    try:
        if not text:
            return "No text provided for analysis."
        
        # Basic statistics
        word_count = len(text.split())
        char_count = len(text)
        sentence_count = len([s for s in text.split('.') if s.strip()])
        
        # Extract numbers
        numbers = re.findall(r'-?\d+(?:\.\d+)?', text)
        
        # Extract dates
        date_patterns = re.findall(r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b|\b\d{4}[/-]\d{1,2}[/-]\d{1,2}\b', text)
        
        # Extract emails
        emails = re.findall(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', text)
        
        analysis = f"Text Analysis:\n"
        analysis += f"- Words: {word_count}\n"
        analysis += f"- Characters: {char_count}\n"
        analysis += f"- Sentences: {sentence_count}\n"
        
        if numbers:
            analysis += f"- Numbers found: {', '.join(numbers[:10])}{'...' if len(numbers) > 10 else ''}\n"
        
        if date_patterns:
            analysis += f"- Dates found: {', '.join(date_patterns)}\n"
        
        if emails:
            analysis += f"- Emails found: {', '.join(emails)}\n"
        
        return analysis
        
    except Exception as e:
        return f"Text analysis error: {e}"

# --- Enhanced Agent ---
class ImprovedWebSearchAgent:
    def __init__(self):
        """Initialize the enhanced agent with better reasoning capabilities."""
        
        # Use more powerful model if available
        model_name = "gpt-4o-mini"  # Fallback to gpt-3.5-turbo if needed
        
        # Enhanced system prompt for better reasoning
        system_prompt = """You are an advanced AI assistant designed to solve complex problems by breaking them down systematically. 

Key capabilities:
1. **Multi-step Reasoning**: Break complex problems into smaller, manageable steps
2. **Information Synthesis**: Combine information from multiple sources
3. **Verification**: Double-check calculations and facts
4. **Context Awareness**: Understand the broader context of questions

Problem-solving approach:
1. Analyze the question carefully to understand what's being asked
2. Identify what information you need to find
3. Use available tools strategically (search, calculate, analyze)
4. Verify your findings and reasoning
5. Provide a clear, accurate answer

When using tools:
- Use focused_search for specific factual information
- Use duck_search for broader context
- Use advanced_calculator for any mathematical operations
- Use date_calculator for time-related queries
- Use text_analyzer when you need to extract information from text

Always think step-by-step and explain your reasoning process."""

        try:
            self.agent = ToolCallingAgent(
                name="ImprovedGAIAAgent",
                description=system_prompt,
                tools=[duck_search, focused_search, advanced_calculator, date_calculator, text_analyzer],
                model=model_name,
                planning_interval=3,  # More frequent planning
            )
            print(f"โœ… Enhanced agent initialized with {model_name}")
        except Exception as e:
            print(f"โš ๏ธ Error initializing with {model_name}, trying fallback...")
            try:
                self.agent = ToolCallingAgent(
                    name="ImprovedGAIAAgent",
                    description=system_prompt,
                    tools=[duck_search, focused_search, advanced_calculator, date_calculator, text_analyzer],
                    model="gpt-3.5-turbo",
                    planning_interval=3,
                )
                print("โœ… Enhanced agent initialized with gpt-3.5-turbo")
            except Exception as e2:
                print(f"โŒ Agent initialization failed: {e2}")
                raise e2

    def __call__(self, question: str) -> str:
        """
        Process a question with enhanced reasoning and error handling.
        
        Args:
            question: The question to answer
            
        Returns:
            A comprehensive answer
        """
        print(f"๐Ÿ” Processing question: {question}")
        
        try:
            # Add some preprocessing to understand question type
            question_lower = question.lower()
            
            # Enhance the question with context clues
            enhanced_question = self._enhance_question(question)
            
            # Run the agent with timeout protection
            start_time = time.time()
            max_time = 120  # 2 minutes max per question
            
            result = self.agent.run(enhanced_question)
            
            elapsed_time = time.time() - start_time
            print(f"โฑ๏ธ Question processed in {elapsed_time:.1f} seconds")
            
            # Post-process the result
            final_answer = self._post_process_answer(result, question)
            
            return final_answer
            
        except Exception as e:
            print(f"โŒ Agent error: {e}")
            # Try a simpler approach as fallback
            return self._fallback_answer(question, str(e))

    def _enhance_question(self, question: str) -> str:
        """Add context and instructions to improve question processing."""
        
        enhanced = f"""Please solve this step by step:

Question: {question}

Instructions:
1. Read the question carefully and identify what type of answer is needed
2. Break down complex problems into steps
3. Use the available tools to gather information or perform calculations
4. Verify your answer makes sense
5. Provide a clear, concise final answer

If this is a factual question, search for current information.
If this involves calculations, show your work.
If this requires multiple steps, explain each step clearly."""

        return enhanced

    def _post_process_answer(self, result: str, original_question: str) -> str:
        """Clean and improve the agent's response."""
        
        if not result or len(result.strip()) < 10:
            return f"I need more information to properly answer: {original_question}"
        
        # Clean up the response
        result = result.strip()
        
        # Ensure we have a clear answer
        if "final answer" not in result.lower() and "answer:" not in result.lower():
            # Try to extract the most relevant part
            lines = result.split('\n')
            if lines:
                # Look for the most substantive line as the answer
                best_line = max(lines, key=len, default=result)
                if len(best_line) > 20:
                    result = f"{result}\n\nFinal Answer: {best_line}"
        
        return result

    def _fallback_answer(self, question: str, error: str) -> str:
        """Provide a fallback response when the main agent fails."""
        
        question_lower = question.lower()
        
        # Try simple keyword-based responses for common question types
        if any(word in question_lower for word in ['calculate', 'math', '+', '-', '*', '/', 'equals']):
            return f"This appears to be a mathematical question. Error occurred: {error}. Please verify the calculation manually."
        
        elif any(word in question_lower for word in ['when', 'date', 'year', 'time']):
            return f"This appears to be a date/time related question. Error occurred: {error}. Please search for current information."
        
        elif any(word in question_lower for word in ['who', 'what', 'where', 'how']):
            return f"This appears to be a factual question. Error occurred: {error}. Please search for current information."
        
        else:
            return f"I encountered an error while processing your question: {error}. Please try rephrasing your question."

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Evaluation & Submission ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")
    if profile:
        username = profile.username
        print(f"๐Ÿ‘ค User: {username}")
    else:
        return "Please login to Hugging Face.", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    questions_url = f"{DEFAULT_API_URL}/questions"
    submit_url = f"{DEFAULT_API_URL}/submit"

    try:
        agent = ImprovedWebSearchAgent()
    except Exception as e:
        return f"Agent initialization error: {e}", None

    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions = response.json()
        if not questions:
            return "No questions received.", None
        
        print(f"๐Ÿ“ Received {len(questions)} questions")
        
    except Exception as e:
        return f"Failed to fetch questions: {e}", None

    results_log = []
    answers_payload = []

    for i, item in enumerate(questions, 1):
        task_id = item.get("task_id")
        question = item.get("question")
        
        if not task_id or not question:
            continue
            
        print(f"\n๐Ÿ“‹ Processing question {i}/{len(questions)}: {task_id}")
        
        try:
            answer = agent(question)
            
            # Ensure answer is not empty
            if not answer or len(answer.strip()) < 2:
                answer = "Unable to determine answer from available information."
            
            results_log.append({
                "Task ID": task_id, 
                "Question": question[:100] + "..." if len(question) > 100 else question,
                "Submitted Answer": answer[:200] + "..." if len(answer) > 200 else answer
            })
            
            answers_payload.append({
                "task_id": task_id, 
                "submitted_answer": answer
            })
            
            print(f"โœ… Answer generated for {task_id}")
            
        except Exception as e:
            error_msg = f"Agent error: {str(e)[:100]}"
            print(f"โŒ Error for {task_id}: {error_msg}")
            
            results_log.append({
                "Task ID": task_id, 
                "Question": question[:100] + "..." if len(question) > 100 else question,
                "Submitted Answer": error_msg
            })
            
            answers_payload.append({
                "task_id": task_id, 
                "submitted_answer": "Error processing question"
            })

    if not answers_payload:
        return "No answers were generated.", pd.DataFrame(results_log)

    print(f"\n๐Ÿš€ Submitting {len(answers_payload)} answers...")

    try:
        response = requests.post(submit_url, json={
            "username": username.strip(),
            "agent_code": agent_code,
            "answers": answers_payload
        }, timeout=120)  # Increased timeout
        
        response.raise_for_status()
        result = response.json()
        
        score = result.get('score', 0)
        correct_count = result.get('correct_count', 0)
        total_attempted = result.get('total_attempted', len(answers_payload))
        
        status = (
            f"โœ… Submission Successful!\n"
            f"User: {result.get('username')}\n"
            f"Score: {score}% ({correct_count}/{total_attempted} correct)\n"
            f"Message: {result.get('message', 'No message')}\n"
            f"Total questions processed: {len(questions)}"
        )
        
        print(f"๐ŸŽฏ Final Score: {score}%")
        
        return status, pd.DataFrame(results_log)
        
    except Exception as e:
        error_msg = f"โŒ Submission failed: {e}"
        print(error_msg)
        return error_msg, pd.DataFrame(results_log)

# --- UI ---
with gr.Blocks(title="Enhanced GAIA Agent") as demo:
    gr.Markdown("# ๐Ÿค– Enhanced GAIA Agent with Advanced Reasoning")
    gr.Markdown("""
    **Improvements in this version:**
    - ๐Ÿง  Enhanced multi-step reasoning capabilities
    - ๐Ÿ” Multiple specialized search tools
    - ๐Ÿงฎ Advanced calculator with better math support
    - ๐Ÿ“… Date and time calculation tools
    - ๐Ÿ“ Text analysis capabilities
    - โšก Better error handling and fallback mechanisms
    - ๐ŸŽฏ Optimized for GAIA benchmark performance
    """)
    
    gr.LoginButton()
    
    with gr.Row():
        run_btn = gr.Button("๐Ÿš€ Run Enhanced Evaluation & Submit", variant="primary", scale=2)
    
    status_box = gr.Textbox(label="๐Ÿ“Š Status & Results", lines=8, interactive=False)
    result_table = gr.DataFrame(label="๐Ÿ“‹ Agent Answers Log", interactive=False)

    run_btn.click(
        fn=run_and_submit_all, 
        outputs=[status_box, result_table],
        show_progress=True
    )

if __name__ == "__main__":
    demo.launch(debug=True, share=False)