sirine1712's picture
Update app.py
151223b verified
raw
history blame
18.7 kB
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import ToolCallingAgent, tool
from duckduckgo_search import DDGS
import math
import openai
import re
import json
from datetime import datetime, timedelta
import time
# --- Enhanced Tools ---
@tool
def duck_search(query: str) -> str:
"""
Searches the web using DuckDuckGo and returns detailed information.
Args:
query: The search query string.
Returns:
A string with comprehensive search results including titles, snippets, and URLs.
"""
try:
with DDGS() as ddgs:
results = ddgs.text(query, max_results=5) # Increased results
if not results:
return "No results found."
formatted_results = []
for i, r in enumerate(results, 1):
formatted_results.append(
f"Result {i}:\n"
f"Title: {r['title']}\n"
f"Content: {r['body']}\n"
f"URL: {r['href']}\n"
f"---"
)
return "\n".join(formatted_results)
except Exception as e:
return f"Search error: {e}"
@tool
def focused_search(query: str, topic: str = "") -> str:
"""
Performs a more focused search with specific keywords for better results.
Args:
query: The main search query
topic: Additional topic context to improve search accuracy
Returns:
Focused search results
"""
try:
# Enhance query with topic context
enhanced_query = f"{query} {topic}".strip()
with DDGS() as ddgs:
results = ddgs.text(enhanced_query, max_results=3)
if not results:
# Try alternative search if no results
results = ddgs.text(query, max_results=3)
if not results:
return "No results found for focused search."
summaries = []
for r in results:
summaries.append(f"**{r['title']}**\n{r['body']}\nSource: {r['href']}")
return "\n\n".join(summaries)
except Exception as e:
return f"Focused search error: {e}"
@tool
def advanced_calculator(expression: str) -> str:
"""
Enhanced calculator with support for complex mathematical operations.
Args:
expression: A mathematical expression or calculation
Returns:
The calculated result with detailed steps when possible
"""
try:
# Clean the expression
expression = expression.strip()
# Handle common mathematical functions and constants
safe_dict = {
"__builtins__": {},
**math.__dict__,
"abs": abs,
"round": round,
"min": min,
"max": max,
"sum": sum,
"pow": pow,
}
# Try to evaluate the expression
result = eval(expression, safe_dict)
# Format the result nicely
if isinstance(result, float):
if result.is_integer():
return str(int(result))
else:
return f"{result:.10g}" # Remove trailing zeros
return str(result)
except Exception as e:
# Try to handle percentage calculations
if "%" in expression:
try:
# Convert percentage expressions
expr_mod = expression.replace("%", "/100")
result = eval(expr_mod, safe_dict)
return str(result)
except:
pass
return f"Calculation error: {e}. Please check the mathematical expression."
@tool
def date_calculator(date_expression: str) -> str:
"""
Calculates dates, time differences, and handles date-related queries.
Args:
date_expression: A date calculation or query
Returns:
The calculated date or time difference
"""
try:
current_date = datetime.now()
# Handle relative date expressions
if "days ago" in date_expression.lower():
days_match = re.search(r'(\d+)\s*days?\s*ago', date_expression.lower())
if days_match:
days = int(days_match.group(1))
target_date = current_date - timedelta(days=days)
return target_date.strftime("%Y-%m-%d (%A)")
elif "days from now" in date_expression.lower():
days_match = re.search(r'(\d+)\s*days?\s*from\s*now', date_expression.lower())
if days_match:
days = int(days_match.group(1))
target_date = current_date + timedelta(days=days)
return target_date.strftime("%Y-%m-%d (%A)")
elif "weeks ago" in date_expression.lower():
weeks_match = re.search(r'(\d+)\s*weeks?\s*ago', date_expression.lower())
if weeks_match:
weeks = int(weeks_match.group(1))
target_date = current_date - timedelta(weeks=weeks)
return target_date.strftime("%Y-%m-%d (%A)")
# Current date info
elif "today" in date_expression.lower() or "current date" in date_expression.lower():
return current_date.strftime("%Y-%m-%d (%A)")
return f"Current date: {current_date.strftime('%Y-%m-%d (%A)')}"
except Exception as e:
return f"Date calculation error: {e}"
@tool
def text_analyzer(text: str) -> str:
"""
Analyzes text for patterns, extracts information, and provides insights.
Args:
text: The text to analyze
Returns:
Analysis results including word count, patterns, and extracted information
"""
try:
if not text:
return "No text provided for analysis."
# Basic statistics
word_count = len(text.split())
char_count = len(text)
sentence_count = len([s for s in text.split('.') if s.strip()])
# Extract numbers
numbers = re.findall(r'-?\d+(?:\.\d+)?', text)
# Extract dates
date_patterns = re.findall(r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b|\b\d{4}[/-]\d{1,2}[/-]\d{1,2}\b', text)
# Extract emails
emails = re.findall(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', text)
analysis = f"Text Analysis:\n"
analysis += f"- Words: {word_count}\n"
analysis += f"- Characters: {char_count}\n"
analysis += f"- Sentences: {sentence_count}\n"
if numbers:
analysis += f"- Numbers found: {', '.join(numbers[:10])}{'...' if len(numbers) > 10 else ''}\n"
if date_patterns:
analysis += f"- Dates found: {', '.join(date_patterns)}\n"
if emails:
analysis += f"- Emails found: {', '.join(emails)}\n"
return analysis
except Exception as e:
return f"Text analysis error: {e}"
# --- Enhanced Agent ---
class ImprovedWebSearchAgent:
def __init__(self):
"""Initialize the enhanced agent with better reasoning capabilities."""
# Use more powerful model if available
model_name = "gpt-4o-mini" # Fallback to gpt-3.5-turbo if needed
# Enhanced system prompt for better reasoning
system_prompt = """You are an advanced AI assistant designed to solve complex problems by breaking them down systematically.
Key capabilities:
1. **Multi-step Reasoning**: Break complex problems into smaller, manageable steps
2. **Information Synthesis**: Combine information from multiple sources
3. **Verification**: Double-check calculations and facts
4. **Context Awareness**: Understand the broader context of questions
Problem-solving approach:
1. Analyze the question carefully to understand what's being asked
2. Identify what information you need to find
3. Use available tools strategically (search, calculate, analyze)
4. Verify your findings and reasoning
5. Provide a clear, accurate answer
When using tools:
- Use focused_search for specific factual information
- Use duck_search for broader context
- Use advanced_calculator for any mathematical operations
- Use date_calculator for time-related queries
- Use text_analyzer when you need to extract information from text
Always think step-by-step and explain your reasoning process."""
try:
self.agent = ToolCallingAgent(
name="ImprovedGAIAAgent",
description=system_prompt,
tools=[duck_search, focused_search, advanced_calculator, date_calculator, text_analyzer],
model=model_name,
planning_interval=3, # More frequent planning
)
print(f"โœ… Enhanced agent initialized with {model_name}")
except Exception as e:
print(f"โš ๏ธ Error initializing with {model_name}, trying fallback...")
try:
self.agent = ToolCallingAgent(
name="ImprovedGAIAAgent",
description=system_prompt,
tools=[duck_search, focused_search, advanced_calculator, date_calculator, text_analyzer],
model="gpt-3.5-turbo",
planning_interval=3,
)
print("โœ… Enhanced agent initialized with gpt-3.5-turbo")
except Exception as e2:
print(f"โŒ Agent initialization failed: {e2}")
raise e2
def __call__(self, question: str) -> str:
"""
Process a question with enhanced reasoning and error handling.
Args:
question: The question to answer
Returns:
A comprehensive answer
"""
print(f"๐Ÿ” Processing question: {question}")
try:
# Add some preprocessing to understand question type
question_lower = question.lower()
# Enhance the question with context clues
enhanced_question = self._enhance_question(question)
# Run the agent with timeout protection
start_time = time.time()
max_time = 120 # 2 minutes max per question
result = self.agent.run(enhanced_question)
elapsed_time = time.time() - start_time
print(f"โฑ๏ธ Question processed in {elapsed_time:.1f} seconds")
# Post-process the result
final_answer = self._post_process_answer(result, question)
return final_answer
except Exception as e:
print(f"โŒ Agent error: {e}")
# Try a simpler approach as fallback
return self._fallback_answer(question, str(e))
def _enhance_question(self, question: str) -> str:
"""Add context and instructions to improve question processing."""
enhanced = f"""Please solve this step by step:
Question: {question}
Instructions:
1. Read the question carefully and identify what type of answer is needed
2. Break down complex problems into steps
3. Use the available tools to gather information or perform calculations
4. Verify your answer makes sense
5. Provide a clear, concise final answer
If this is a factual question, search for current information.
If this involves calculations, show your work.
If this requires multiple steps, explain each step clearly."""
return enhanced
def _post_process_answer(self, result: str, original_question: str) -> str:
"""Clean and improve the agent's response."""
if not result or len(result.strip()) < 10:
return f"I need more information to properly answer: {original_question}"
# Clean up the response
result = result.strip()
# Ensure we have a clear answer
if "final answer" not in result.lower() and "answer:" not in result.lower():
# Try to extract the most relevant part
lines = result.split('\n')
if lines:
# Look for the most substantive line as the answer
best_line = max(lines, key=len, default=result)
if len(best_line) > 20:
result = f"{result}\n\nFinal Answer: {best_line}"
return result
def _fallback_answer(self, question: str, error: str) -> str:
"""Provide a fallback response when the main agent fails."""
question_lower = question.lower()
# Try simple keyword-based responses for common question types
if any(word in question_lower for word in ['calculate', 'math', '+', '-', '*', '/', 'equals']):
return f"This appears to be a mathematical question. Error occurred: {error}. Please verify the calculation manually."
elif any(word in question_lower for word in ['when', 'date', 'year', 'time']):
return f"This appears to be a date/time related question. Error occurred: {error}. Please search for current information."
elif any(word in question_lower for word in ['who', 'what', 'where', 'how']):
return f"This appears to be a factual question. Error occurred: {error}. Please search for current information."
else:
return f"I encountered an error while processing your question: {error}. Please try rephrasing your question."
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Evaluation & Submission ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"๐Ÿ‘ค User: {username}")
else:
return "Please login to Hugging Face.", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
questions_url = f"{DEFAULT_API_URL}/questions"
submit_url = f"{DEFAULT_API_URL}/submit"
try:
agent = ImprovedWebSearchAgent()
except Exception as e:
return f"Agent initialization error: {e}", None
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions = response.json()
if not questions:
return "No questions received.", None
print(f"๐Ÿ“ Received {len(questions)} questions")
except Exception as e:
return f"Failed to fetch questions: {e}", None
results_log = []
answers_payload = []
for i, item in enumerate(questions, 1):
task_id = item.get("task_id")
question = item.get("question")
if not task_id or not question:
continue
print(f"\n๐Ÿ“‹ Processing question {i}/{len(questions)}: {task_id}")
try:
answer = agent(question)
# Ensure answer is not empty
if not answer or len(answer.strip()) < 2:
answer = "Unable to determine answer from available information."
results_log.append({
"Task ID": task_id,
"Question": question[:100] + "..." if len(question) > 100 else question,
"Submitted Answer": answer[:200] + "..." if len(answer) > 200 else answer
})
answers_payload.append({
"task_id": task_id,
"submitted_answer": answer
})
print(f"โœ… Answer generated for {task_id}")
except Exception as e:
error_msg = f"Agent error: {str(e)[:100]}"
print(f"โŒ Error for {task_id}: {error_msg}")
results_log.append({
"Task ID": task_id,
"Question": question[:100] + "..." if len(question) > 100 else question,
"Submitted Answer": error_msg
})
answers_payload.append({
"task_id": task_id,
"submitted_answer": "Error processing question"
})
if not answers_payload:
return "No answers were generated.", pd.DataFrame(results_log)
print(f"\n๐Ÿš€ Submitting {len(answers_payload)} answers...")
try:
response = requests.post(submit_url, json={
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}, timeout=120) # Increased timeout
response.raise_for_status()
result = response.json()
score = result.get('score', 0)
correct_count = result.get('correct_count', 0)
total_attempted = result.get('total_attempted', len(answers_payload))
status = (
f"โœ… Submission Successful!\n"
f"User: {result.get('username')}\n"
f"Score: {score}% ({correct_count}/{total_attempted} correct)\n"
f"Message: {result.get('message', 'No message')}\n"
f"Total questions processed: {len(questions)}"
)
print(f"๐ŸŽฏ Final Score: {score}%")
return status, pd.DataFrame(results_log)
except Exception as e:
error_msg = f"โŒ Submission failed: {e}"
print(error_msg)
return error_msg, pd.DataFrame(results_log)
# --- UI ---
with gr.Blocks(title="Enhanced GAIA Agent") as demo:
gr.Markdown("# ๐Ÿค– Enhanced GAIA Agent with Advanced Reasoning")
gr.Markdown("""
**Improvements in this version:**
- ๐Ÿง  Enhanced multi-step reasoning capabilities
- ๐Ÿ” Multiple specialized search tools
- ๐Ÿงฎ Advanced calculator with better math support
- ๐Ÿ“… Date and time calculation tools
- ๐Ÿ“ Text analysis capabilities
- โšก Better error handling and fallback mechanisms
- ๐ŸŽฏ Optimized for GAIA benchmark performance
""")
gr.LoginButton()
with gr.Row():
run_btn = gr.Button("๐Ÿš€ Run Enhanced Evaluation & Submit", variant="primary", scale=2)
status_box = gr.Textbox(label="๐Ÿ“Š Status & Results", lines=8, interactive=False)
result_table = gr.DataFrame(label="๐Ÿ“‹ Agent Answers Log", interactive=False)
run_btn.click(
fn=run_and_submit_all,
outputs=[status_box, result_table],
show_progress=True
)
if __name__ == "__main__":
demo.launch(debug=True, share=False)