|
|
import os |
|
|
import gradio as gr |
|
|
import requests |
|
|
import pandas as pd |
|
|
from smolagents import ToolCallingAgent, tool |
|
|
import duckduckgo_search |
|
|
import math |
|
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
|
@tool |
|
|
def duck_search(query: str) -> str: |
|
|
"""Searches the web using DuckDuckGo and returns a short summary.""" |
|
|
try: |
|
|
results = duckduckgo_search.ddg(query, max_results=3) |
|
|
if results: |
|
|
return "\n".join([f"{r['title']}: {r['body']}" for r in results]) |
|
|
else: |
|
|
return "No results found." |
|
|
except Exception as e: |
|
|
return f"Search error: {e}" |
|
|
|
|
|
@tool |
|
|
def calculator(expression: str) -> str: |
|
|
"""Safely evaluates basic math expressions.""" |
|
|
try: |
|
|
result = eval(expression, {"__builtins__": {}}, math.__dict__) |
|
|
return str(result) |
|
|
except Exception as e: |
|
|
return f"Calculation error: {e}" |
|
|
|
|
|
|
|
|
class WebSearchAgent: |
|
|
def __init__(self): |
|
|
self.agent = ToolCallingAgent( |
|
|
name="GAIAWebToolAgent", |
|
|
description="An agent that answers questions using reasoning and tools like web search and calculator.", |
|
|
tools=[duck_search, calculator], |
|
|
step_limit=5, |
|
|
system_prompt="You're a helpful agent tasked with answering general questions using reasoning and external tools if needed. Prioritize factual accuracy, logic, and concise answers." |
|
|
) |
|
|
print("β
WebSearchAgent initialized.") |
|
|
|
|
|
def __call__(self, question: str) -> str: |
|
|
print(f"π Agent received: {question}") |
|
|
try: |
|
|
return self.agent.run(question) |
|
|
except Exception as e: |
|
|
print(f"β Error: {e}") |
|
|
return f"Error: {e}" |
|
|
|
|
|
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
|
space_id = os.getenv("SPACE_ID") |
|
|
if profile: |
|
|
username = profile.username |
|
|
print(f"User logged in: {username}") |
|
|
else: |
|
|
return "Please login to Hugging Face first.", None |
|
|
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
|
api_url = DEFAULT_API_URL |
|
|
questions_url = f"{api_url}/questions" |
|
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
|
agent = WebSearchAgent() |
|
|
except Exception as e: |
|
|
return f"Agent init error: {e}", None |
|
|
|
|
|
try: |
|
|
print("π₯ Fetching questions...") |
|
|
response = requests.get(questions_url, timeout=15) |
|
|
response.raise_for_status() |
|
|
questions_data = response.json() |
|
|
if not questions_data: |
|
|
return "Fetched questions list is empty or invalid format.", None |
|
|
print(f"β
Fetched {len(questions_data)} questions.") |
|
|
except Exception as e: |
|
|
return f"Error fetching questions: {e}", None |
|
|
|
|
|
answers_payload = [] |
|
|
results_log = [] |
|
|
print("π Running agent on questions...") |
|
|
for item in questions_data: |
|
|
task_id = item.get("task_id") |
|
|
question_text = item.get("question") |
|
|
if not task_id or not question_text: |
|
|
continue |
|
|
try: |
|
|
submitted_answer = agent(question_text) |
|
|
answers_payload.append({ |
|
|
"task_id": task_id, |
|
|
"submitted_answer": submitted_answer |
|
|
}) |
|
|
results_log.append({ |
|
|
"Task ID": task_id, |
|
|
"Question": question_text, |
|
|
"Submitted Answer": submitted_answer |
|
|
}) |
|
|
except Exception as e: |
|
|
error_msg = f"Agent error: {e}" |
|
|
print(error_msg) |
|
|
results_log.append({ |
|
|
"Task ID": task_id, |
|
|
"Question": question_text, |
|
|
"Submitted Answer": error_msg |
|
|
}) |
|
|
|
|
|
if not answers_payload: |
|
|
return "No answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
print("π€ Submitting answers...") |
|
|
submission_data = { |
|
|
"username": username.strip(), |
|
|
"agent_code": agent_code, |
|
|
"answers": answers_payload |
|
|
} |
|
|
|
|
|
try: |
|
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
|
response.raise_for_status() |
|
|
result = response.json() |
|
|
final_status = ( |
|
|
f"β
Submission Successful!\n" |
|
|
f"User: {result.get('username')}\n" |
|
|
f"Score: {result.get('score', 'N/A')}% " |
|
|
f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')} correct)\n" |
|
|
f"Message: {result.get('message', 'No message.')}" |
|
|
) |
|
|
return final_status, pd.DataFrame(results_log) |
|
|
except Exception as e: |
|
|
return f"Submission error: {e}", pd.DataFrame(results_log) |
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
gr.Markdown("# π§ GAIA Agent with Web Search & Calculator") |
|
|
gr.Markdown(""" |
|
|
1. Log in to Hugging Face. |
|
|
2. Click **Run Evaluation** to fetch, run, and submit. |
|
|
3. Your agent uses web search (DuckDuckGo) and math tools. |
|
|
""") |
|
|
gr.LoginButton() |
|
|
run_button = gr.Button("π Run Evaluation & Submit All Answers") |
|
|
status_output = gr.Textbox(label="Status", lines=5) |
|
|
results_table = gr.DataFrame(label="Answer Log") |
|
|
|
|
|
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
print("π Launching App...") |
|
|
demo.launch(debug=True, share=False) |