Update app.py
Browse files
app.py
CHANGED
|
@@ -1,473 +1,196 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
-
import json
|
| 6 |
-
import time
|
| 7 |
-
import re
|
| 8 |
-
from typing import Dict, List, Any, Optional
|
| 9 |
|
| 10 |
-
#
|
|
|
|
| 11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 12 |
-
MODEL_NAME = "google/flan-t5-large" # Free model that works well
|
| 13 |
-
SPACE_ID = os.getenv("SPACE_ID", "sirine1712/Final_Assignment_Template")
|
| 14 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
def __init__(self
|
| 20 |
-
|
| 21 |
-
self.api_url = f"https://api-inference.huggingface.co/models/{model}"
|
| 22 |
-
self.headers = self._get_headers()
|
| 23 |
-
|
| 24 |
-
def _get_headers(self) -> dict:
|
| 25 |
-
"""Get proper headers with authentication"""
|
| 26 |
-
if not HF_TOKEN:
|
| 27 |
-
print("⚠️ WARNING: HF_TOKEN not found in environment variables")
|
| 28 |
-
return {"Content-Type": "application/json"}
|
| 29 |
-
|
| 30 |
-
return {
|
| 31 |
-
"Authorization": f"Bearer {HF_TOKEN}",
|
| 32 |
-
"Content-Type": "application/json"
|
| 33 |
-
}
|
| 34 |
-
|
| 35 |
-
def _test_api_access(self) -> bool:
|
| 36 |
-
"""Test if we can access the HF API"""
|
| 37 |
-
try:
|
| 38 |
-
test_response = requests.post(
|
| 39 |
-
self.api_url,
|
| 40 |
-
headers=self.headers,
|
| 41 |
-
json={"inputs": "Test connection"},
|
| 42 |
-
timeout=10
|
| 43 |
-
)
|
| 44 |
-
if test_response.status_code == 401:
|
| 45 |
-
print("❌ Authentication failed - check HF_TOKEN")
|
| 46 |
-
return False
|
| 47 |
-
elif test_response.status_code == 503:
|
| 48 |
-
print("⏳ Model is loading...")
|
| 49 |
-
return True
|
| 50 |
-
else:
|
| 51 |
-
print("✅ API access confirmed")
|
| 52 |
-
return True
|
| 53 |
-
except Exception as e:
|
| 54 |
-
print(f"❌ API test failed: {e}")
|
| 55 |
-
return False
|
| 56 |
-
|
| 57 |
-
def classify_question_type(self, question: str) -> str:
|
| 58 |
-
"""Classify question type for better processing"""
|
| 59 |
-
question_lower = question.lower()
|
| 60 |
-
|
| 61 |
-
# Mathematical/computational questions
|
| 62 |
-
if any(word in question_lower for word in [
|
| 63 |
-
'calculate', 'compute', 'sum', 'multiply', 'divide', 'subtract',
|
| 64 |
-
'average', 'mean', 'percentage', 'ratio', 'equation', 'formula',
|
| 65 |
-
'math', 'arithmetic', 'algebra', '+', '-', '*', '/', '='
|
| 66 |
-
]):
|
| 67 |
-
return "mathematical"
|
| 68 |
-
|
| 69 |
-
# Factual/knowledge questions
|
| 70 |
-
elif any(word in question_lower for word in [
|
| 71 |
-
'who is', 'what is', 'when was', 'where is', 'which',
|
| 72 |
-
'born', 'died', 'founded', 'invented', 'discovered',
|
| 73 |
-
'capital', 'president', 'author', 'wrote', 'directed'
|
| 74 |
-
]):
|
| 75 |
-
return "factual"
|
| 76 |
-
|
| 77 |
-
# Counting/quantitative questions
|
| 78 |
-
elif any(word in question_lower for word in [
|
| 79 |
-
'how many', 'count', 'number of', 'total', 'quantity'
|
| 80 |
-
]):
|
| 81 |
-
return "counting"
|
| 82 |
-
|
| 83 |
-
# Date/time questions
|
| 84 |
-
elif any(word in question_lower for word in [
|
| 85 |
-
'year', 'date', 'century', 'decade', 'month', 'day',
|
| 86 |
-
'age', 'old', 'recent', 'latest', 'first time', 'last time'
|
| 87 |
-
]):
|
| 88 |
-
return "temporal"
|
| 89 |
-
|
| 90 |
-
else:
|
| 91 |
-
return "general"
|
| 92 |
-
|
| 93 |
-
def format_prompt_by_type(self, question: str, question_type: str) -> str:
|
| 94 |
-
"""Format prompt based on question type for T5 model"""
|
| 95 |
-
|
| 96 |
-
if question_type == "mathematical":
|
| 97 |
-
return f"solve: {question}"
|
| 98 |
-
|
| 99 |
-
elif question_type == "factual":
|
| 100 |
-
return f"question: {question}"
|
| 101 |
-
|
| 102 |
-
elif question_type == "counting":
|
| 103 |
-
return f"count: {question}"
|
| 104 |
-
|
| 105 |
-
elif question_type == "temporal":
|
| 106 |
-
return f"when: {question}"
|
| 107 |
-
|
| 108 |
-
else:
|
| 109 |
-
return f"answer: {question}"
|
| 110 |
-
|
| 111 |
-
def extract_clean_answer(self, raw_response: str, question: str, question_type: str) -> str:
|
| 112 |
-
"""Extract and clean the answer from model response"""
|
| 113 |
-
if not raw_response or len(raw_response.strip()) == 0:
|
| 114 |
-
return "Unable to generate answer"
|
| 115 |
-
|
| 116 |
-
# Clean the response
|
| 117 |
-
response = raw_response.strip()
|
| 118 |
-
|
| 119 |
-
# For T5 models, often the response is already clean
|
| 120 |
-
# Remove common artifacts
|
| 121 |
-
response = re.sub(r'^(answer:|solution:|result:)\s*', '', response, flags=re.IGNORECASE)
|
| 122 |
-
|
| 123 |
-
# Extract specific patterns based on question type
|
| 124 |
-
if question_type == "mathematical":
|
| 125 |
-
# Try to extract numerical answer
|
| 126 |
-
numbers = re.findall(r'-?\d+\.?\d*', response)
|
| 127 |
-
if numbers:
|
| 128 |
-
return str(numbers[-1]) # Return the last number found
|
| 129 |
-
|
| 130 |
-
elif question_type == "counting":
|
| 131 |
-
# Extract the first number found
|
| 132 |
-
numbers = re.findall(r'\d+', response)
|
| 133 |
-
if numbers:
|
| 134 |
-
return str(numbers[0])
|
| 135 |
-
|
| 136 |
-
elif question_type == "temporal":
|
| 137 |
-
# Look for years, dates
|
| 138 |
-
years = re.findall(r'\b(19|20)\d{2}\b', response)
|
| 139 |
-
if years:
|
| 140 |
-
return str(years[0])
|
| 141 |
-
|
| 142 |
-
dates = re.findall(r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b', response)
|
| 143 |
-
if dates:
|
| 144 |
-
return str(dates[0])
|
| 145 |
-
|
| 146 |
-
# Clean up the response length
|
| 147 |
-
sentences = response.split('.')
|
| 148 |
-
if len(sentences) > 0 and len(sentences[0]) > 5:
|
| 149 |
-
clean_answer = sentences[0].strip()
|
| 150 |
-
if len(clean_answer) > 100:
|
| 151 |
-
clean_answer = clean_answer[:100] + "..."
|
| 152 |
-
return clean_answer
|
| 153 |
-
|
| 154 |
-
# Fallback: return first 100 characters
|
| 155 |
-
return response[:100] + "..." if len(response) > 100 else response
|
| 156 |
-
|
| 157 |
def __call__(self, question: str) -> str:
|
| 158 |
-
"
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
if not self._test_api_access():
|
| 163 |
-
return "API authentication failed - check HF_TOKEN"
|
| 164 |
-
|
| 165 |
-
try:
|
| 166 |
-
# Classify and format the question
|
| 167 |
-
question_type = self.classify_question_type(question)
|
| 168 |
-
formatted_prompt = self.format_prompt_by_type(question, question_type)
|
| 169 |
-
|
| 170 |
-
print(f"📝 Question type: {question_type}")
|
| 171 |
-
|
| 172 |
-
# Make API call with retries
|
| 173 |
-
max_retries = 3
|
| 174 |
-
for attempt in range(max_retries):
|
| 175 |
-
try:
|
| 176 |
-
response = requests.post(
|
| 177 |
-
self.api_url,
|
| 178 |
-
headers=self.headers,
|
| 179 |
-
json={
|
| 180 |
-
"inputs": formatted_prompt,
|
| 181 |
-
"parameters": {
|
| 182 |
-
"max_new_tokens": 100,
|
| 183 |
-
"temperature": 0.1, # Very low temperature for precise answers
|
| 184 |
-
"do_sample": False, # Deterministic output
|
| 185 |
-
"return_full_text": False
|
| 186 |
-
}
|
| 187 |
-
},
|
| 188 |
-
timeout=20
|
| 189 |
-
)
|
| 190 |
-
|
| 191 |
-
if response.status_code == 401:
|
| 192 |
-
return "Authentication error - invalid HF_TOKEN"
|
| 193 |
-
|
| 194 |
-
elif response.status_code == 503: # Model loading
|
| 195 |
-
wait_time = 15 + (attempt * 10)
|
| 196 |
-
print(f"⏳ Model loading, waiting {wait_time}s... (attempt {attempt + 1})")
|
| 197 |
-
time.sleep(wait_time)
|
| 198 |
-
continue
|
| 199 |
-
|
| 200 |
-
elif response.status_code == 429: # Rate limit
|
| 201 |
-
wait_time = 5 + (attempt * 5)
|
| 202 |
-
print(f"⏳ Rate limited, waiting {wait_time}s...")
|
| 203 |
-
time.sleep(wait_time)
|
| 204 |
-
continue
|
| 205 |
-
|
| 206 |
-
response.raise_for_status()
|
| 207 |
-
result = response.json()
|
| 208 |
-
|
| 209 |
-
# Extract the generated text
|
| 210 |
-
if isinstance(result, list) and len(result) > 0:
|
| 211 |
-
if 'generated_text' in result[0]:
|
| 212 |
-
raw_answer = result[0]['generated_text']
|
| 213 |
-
else:
|
| 214 |
-
raw_answer = str(result[0])
|
| 215 |
-
elif isinstance(result, dict):
|
| 216 |
-
raw_answer = result.get('generated_text', str(result))
|
| 217 |
-
else:
|
| 218 |
-
raw_answer = str(result)
|
| 219 |
-
|
| 220 |
-
# Clean and extract the final answer
|
| 221 |
-
final_answer = self.extract_clean_answer(raw_answer, question, question_type)
|
| 222 |
-
print(f"✅ Answer: {final_answer}")
|
| 223 |
-
return final_answer
|
| 224 |
-
|
| 225 |
-
except requests.exceptions.RequestException as e:
|
| 226 |
-
if attempt == max_retries - 1:
|
| 227 |
-
return f"Request failed after {max_retries} attempts: {str(e)}"
|
| 228 |
-
print(f"⚠️ Request failed (attempt {attempt + 1}), retrying...")
|
| 229 |
-
time.sleep(3)
|
| 230 |
-
|
| 231 |
-
except Exception as e:
|
| 232 |
-
error_msg = f"Processing error: {str(e)}"
|
| 233 |
-
print(f"❌ {error_msg}")
|
| 234 |
-
return error_msg
|
| 235 |
|
| 236 |
-
def
|
| 237 |
-
"""
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
else:
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
|
| 252 |
-
|
| 253 |
-
"
|
| 254 |
-
if not profile:
|
| 255 |
-
return "❌ Please log in with your Hugging Face account first.", None
|
| 256 |
-
|
| 257 |
-
# Check environment
|
| 258 |
-
env_status = check_environment()
|
| 259 |
-
if "❌" in env_status:
|
| 260 |
-
return f"Environment check failed:\n{env_status}", None
|
| 261 |
-
|
| 262 |
-
username = profile.username or "anonymous"
|
| 263 |
-
agent_code = f"https://huggingface.co/spaces/{SPACE_ID}/tree/main"
|
| 264 |
-
|
| 265 |
-
print(f"🚀 Starting GAIA evaluation for user: {username}")
|
| 266 |
-
print(f"🔧 Environment status:\n{env_status}")
|
| 267 |
-
|
| 268 |
-
# Initialize the agent
|
| 269 |
-
agent = GAIAAgent()
|
| 270 |
-
|
| 271 |
-
# Fetch questions from GAIA API
|
| 272 |
try:
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
except Exception as e:
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
print(f"Question: {q['question']}")
|
| 293 |
-
|
| 294 |
try:
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
if not answer.startswith(("Error:", "Authentication error", "API authentication failed")):
|
| 299 |
-
successful_answers += 1
|
| 300 |
-
status = "✅ Success"
|
| 301 |
-
else:
|
| 302 |
-
status = "❌ Failed"
|
| 303 |
-
|
| 304 |
except Exception as e:
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
answers.
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
"Answer": str(answer)[:60] + "..." if len(str(answer)) > 60 else str(answer),
|
| 320 |
-
"Status": status
|
| 321 |
-
})
|
| 322 |
-
|
| 323 |
-
print(f"Answer: {answer}")
|
| 324 |
-
print(f"Status: {status}")
|
| 325 |
-
|
| 326 |
-
print(f"\n📊 Processing complete: {successful_answers}/{len(questions)} successful")
|
| 327 |
-
|
| 328 |
-
# Submit answers to GAIA scoring API
|
| 329 |
try:
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
"
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
f"{
|
| 339 |
-
json=submission_data,
|
| 340 |
-
timeout=60
|
| 341 |
)
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
except Exception as e:
|
| 348 |
-
|
| 349 |
-
print(
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
# Format results
|
| 353 |
-
score = result.get('score', 'N/A')
|
| 354 |
-
correct_count = result.get('correct_count', 'N/A')
|
| 355 |
-
total_attempted = result.get('total_attempted', 'N/A')
|
| 356 |
-
message = result.get('message', 'No additional message')
|
| 357 |
-
|
| 358 |
-
success_message = f"""✅ **GAIA Evaluation Complete!**
|
| 359 |
-
|
| 360 |
-
**📊 Results:**
|
| 361 |
-
- **Score:** {score}%
|
| 362 |
-
- **Correct Answers:** {correct_count}/{total_attempted}
|
| 363 |
-
- **Questions Processed:** {len(questions)}
|
| 364 |
-
- **Successful API Calls:** {successful_answers}/{len(questions)}
|
| 365 |
|
| 366 |
-
**🎯 Target Progress:** {"✅ TARGET ACHIEVED!" if isinstance(score, (int, float)) and score >= 30.0 else f"Need {30.0 - (score if isinstance(score, (int, float)) else 0):.1f}% more to reach 30%"}
|
| 367 |
|
| 368 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 369 |
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
- Check question types that performed poorly
|
| 374 |
-
"""
|
| 375 |
-
|
| 376 |
-
print(success_message)
|
| 377 |
-
return success_message, pd.DataFrame(log_entries)
|
| 378 |
|
| 379 |
-
# Create Gradio Interface
|
| 380 |
-
def create_interface():
|
| 381 |
-
"""Create the Gradio interface"""
|
| 382 |
-
with gr.Blocks(
|
| 383 |
-
title="🎯 GAIA Challenge Agent",
|
| 384 |
-
theme=gr.themes.Soft(),
|
| 385 |
-
css="""
|
| 386 |
-
.status-box {
|
| 387 |
-
background: #f8f9fa;
|
| 388 |
-
border-left: 4px solid #007bff;
|
| 389 |
-
padding: 15px;
|
| 390 |
-
}
|
| 391 |
-
"""
|
| 392 |
-
) as demo:
|
| 393 |
-
|
| 394 |
-
gr.Markdown("""
|
| 395 |
-
# 🎯 GAIA Challenge Agent
|
| 396 |
-
|
| 397 |
-
**Goal:** Achieve 30% accuracy on the GAIA benchmark
|
| 398 |
-
|
| 399 |
-
This agent uses Google's FLAN-T5-Large model with specialized question processing to tackle GAIA's challenging questions.
|
| 400 |
-
|
| 401 |
-
**Setup Required:**
|
| 402 |
-
1. Set `HF_TOKEN` in your Space secrets (Settings → Repository secrets)
|
| 403 |
-
2. Set `SPACE_ID` to your space name (e.g., "username/space-name")
|
| 404 |
-
""")
|
| 405 |
-
|
| 406 |
-
# Environment check
|
| 407 |
-
with gr.Accordion("🔧 Environment Check", open=False):
|
| 408 |
-
env_check = gr.Textbox(
|
| 409 |
-
value=check_environment(),
|
| 410 |
-
label="Environment Status",
|
| 411 |
-
lines=3,
|
| 412 |
-
interactive=False
|
| 413 |
-
)
|
| 414 |
-
|
| 415 |
-
# Authentication
|
| 416 |
-
gr.Markdown("### 🔐 Authentication")
|
| 417 |
-
gr.LoginButton(value="🔑 Login with Hugging Face")
|
| 418 |
-
|
| 419 |
-
# Main controls
|
| 420 |
-
gr.Markdown("### 🚀 Run Evaluation")
|
| 421 |
-
run_button = gr.Button(
|
| 422 |
-
"🎯 Start GAIA Evaluation",
|
| 423 |
-
variant="primary",
|
| 424 |
-
size="lg"
|
| 425 |
-
)
|
| 426 |
-
|
| 427 |
-
# Results
|
| 428 |
-
gr.Markdown("### 📊 Results")
|
| 429 |
-
with gr.Row():
|
| 430 |
-
status_output = gr.Textbox(
|
| 431 |
-
label="📋 Evaluation Results",
|
| 432 |
-
lines=12,
|
| 433 |
-
max_lines=20,
|
| 434 |
-
placeholder="Click 'Start GAIA Evaluation' to begin...",
|
| 435 |
-
elem_classes=["status-box"]
|
| 436 |
-
)
|
| 437 |
-
|
| 438 |
-
gr.Markdown("### 📝 Question Processing Log")
|
| 439 |
-
results_table = gr.DataFrame(
|
| 440 |
-
label="Detailed Processing Results",
|
| 441 |
-
headers=["Task ID", "Question", "Answer", "Status"],
|
| 442 |
-
wrap=True,
|
| 443 |
-
max_height=400
|
| 444 |
-
)
|
| 445 |
-
|
| 446 |
-
# Event handlers
|
| 447 |
-
run_button.click(
|
| 448 |
-
fn=run_and_submit_all,
|
| 449 |
-
outputs=[status_output, results_table],
|
| 450 |
-
show_progress=True
|
| 451 |
-
)
|
| 452 |
-
|
| 453 |
-
# Footer
|
| 454 |
-
gr.Markdown("""
|
| 455 |
---
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 465 |
|
| 466 |
-
# Launch the app
|
| 467 |
if __name__ == "__main__":
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
| 4 |
+
import inspect
|
| 5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
# (Keep Constants as is)
|
| 8 |
+
# --- Constants ---
|
| 9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# --- Basic Agent Definition ---
|
| 12 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 13 |
+
class BasicAgent:
|
| 14 |
+
def __init__(self):
|
| 15 |
+
print("BasicAgent initialized.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
def __call__(self, question: str) -> str:
|
| 17 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 18 |
+
fixed_answer = "This is a default answer."
|
| 19 |
+
print(f"Agent returning fixed answer: {fixed_answer}")
|
| 20 |
+
return fixed_answer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 23 |
+
"""
|
| 24 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 25 |
+
and displays the results.
|
| 26 |
+
"""
|
| 27 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 28 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
| 29 |
+
|
| 30 |
+
if profile:
|
| 31 |
+
username= f"{profile.username}"
|
| 32 |
+
print(f"User logged in: {username}")
|
| 33 |
else:
|
| 34 |
+
print("User not logged in.")
|
| 35 |
+
return "Please Login to Hugging Face with the button.", None
|
| 36 |
+
|
| 37 |
+
api_url = DEFAULT_API_URL
|
| 38 |
+
questions_url = f"{api_url}/questions"
|
| 39 |
+
submit_url = f"{api_url}/submit"
|
| 40 |
+
|
| 41 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 42 |
+
try:
|
| 43 |
+
agent = BasicAgent()
|
| 44 |
+
except Exception as e:
|
| 45 |
+
print(f"Error instantiating agent: {e}")
|
| 46 |
+
return f"Error initializing agent: {e}", None
|
| 47 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
| 48 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 49 |
+
print(agent_code)
|
| 50 |
|
| 51 |
+
# 2. Fetch Questions
|
| 52 |
+
print(f"Fetching questions from: {questions_url}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
try:
|
| 54 |
+
response = requests.get(questions_url, timeout=15)
|
| 55 |
+
response.raise_for_status()
|
| 56 |
+
questions_data = response.json()
|
| 57 |
+
if not questions_data:
|
| 58 |
+
print("Fetched questions list is empty.")
|
| 59 |
+
return "Fetched questions list is empty or invalid format.", None
|
| 60 |
+
print(f"Fetched {len(questions_data)} questions.")
|
| 61 |
+
except requests.exceptions.RequestException as e:
|
| 62 |
+
print(f"Error fetching questions: {e}")
|
| 63 |
+
return f"Error fetching questions: {e}", None
|
| 64 |
+
except requests.exceptions.JSONDecodeError as e:
|
| 65 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 66 |
+
print(f"Response text: {response.text[:500]}")
|
| 67 |
+
return f"Error decoding server response for questions: {e}", None
|
| 68 |
except Exception as e:
|
| 69 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
| 70 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
| 71 |
+
|
| 72 |
+
# 3. Run your Agent
|
| 73 |
+
results_log = []
|
| 74 |
+
answers_payload = []
|
| 75 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
| 76 |
+
for item in questions_data:
|
| 77 |
+
task_id = item.get("task_id")
|
| 78 |
+
question_text = item.get("question")
|
| 79 |
+
if not task_id or question_text is None:
|
| 80 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
| 81 |
+
continue
|
|
|
|
|
|
|
| 82 |
try:
|
| 83 |
+
submitted_answer = agent(question_text)
|
| 84 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 85 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
except Exception as e:
|
| 87 |
+
print(f"Error running agent on task {task_id}: {e}")
|
| 88 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 89 |
+
|
| 90 |
+
if not answers_payload:
|
| 91 |
+
print("Agent did not produce any answers to submit.")
|
| 92 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 93 |
+
|
| 94 |
+
# 4. Prepare Submission
|
| 95 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 96 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 97 |
+
print(status_update)
|
| 98 |
+
|
| 99 |
+
# 5. Submit
|
| 100 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
try:
|
| 102 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 103 |
+
response.raise_for_status()
|
| 104 |
+
result_data = response.json()
|
| 105 |
+
final_status = (
|
| 106 |
+
f"Submission Successful!\n"
|
| 107 |
+
f"User: {result_data.get('username')}\n"
|
| 108 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
| 109 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 110 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
|
|
|
|
|
|
| 111 |
)
|
| 112 |
+
print("Submission successful.")
|
| 113 |
+
results_df = pd.DataFrame(results_log)
|
| 114 |
+
return final_status, results_df
|
| 115 |
+
except requests.exceptions.HTTPError as e:
|
| 116 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
| 117 |
+
try:
|
| 118 |
+
error_json = e.response.json()
|
| 119 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
| 120 |
+
except requests.exceptions.JSONDecodeError:
|
| 121 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
| 122 |
+
status_message = f"Submission Failed: {error_detail}"
|
| 123 |
+
print(status_message)
|
| 124 |
+
results_df = pd.DataFrame(results_log)
|
| 125 |
+
return status_message, results_df
|
| 126 |
+
except requests.exceptions.Timeout:
|
| 127 |
+
status_message = "Submission Failed: The request timed out."
|
| 128 |
+
print(status_message)
|
| 129 |
+
results_df = pd.DataFrame(results_log)
|
| 130 |
+
return status_message, results_df
|
| 131 |
+
except requests.exceptions.RequestException as e:
|
| 132 |
+
status_message = f"Submission Failed: Network error - {e}"
|
| 133 |
+
print(status_message)
|
| 134 |
+
results_df = pd.DataFrame(results_log)
|
| 135 |
+
return status_message, results_df
|
| 136 |
except Exception as e:
|
| 137 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
| 138 |
+
print(status_message)
|
| 139 |
+
results_df = pd.DataFrame(results_log)
|
| 140 |
+
return status_message, results_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
|
|
|
| 142 |
|
| 143 |
+
# --- Build Gradio Interface using Blocks ---
|
| 144 |
+
with gr.Blocks() as demo:
|
| 145 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
| 146 |
+
gr.Markdown(
|
| 147 |
+
"""
|
| 148 |
+
**Instructions:**
|
| 149 |
|
| 150 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 151 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 152 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
---
|
| 155 |
+
**Disclaimers:**
|
| 156 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
| 157 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
| 158 |
+
"""
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
gr.LoginButton()
|
| 162 |
+
|
| 163 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 164 |
+
|
| 165 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 166 |
+
# Removed max_rows=10 from DataFrame constructor
|
| 167 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 168 |
+
|
| 169 |
+
run_button.click(
|
| 170 |
+
fn=run_and_submit_all,
|
| 171 |
+
outputs=[status_output, results_table]
|
| 172 |
+
)
|
| 173 |
|
|
|
|
| 174 |
if __name__ == "__main__":
|
| 175 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
| 176 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 177 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
| 178 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
| 179 |
+
|
| 180 |
+
if space_host_startup:
|
| 181 |
+
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
| 182 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
| 183 |
+
else:
|
| 184 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 185 |
+
|
| 186 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
| 187 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 188 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 189 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 190 |
+
else:
|
| 191 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
| 192 |
+
|
| 193 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 194 |
+
|
| 195 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 196 |
+
demo.launch(debug=True, share=False)
|