Spaces:
Running
on
Zero
Running
on
Zero
| import spaces # 必须放在最前面 | |
| import os | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| import gradio as gr | |
| # 延迟 CUDA 初始化 | |
| weight_dtype = torch.float32 | |
| # 加载模型组件 | |
| from DAI.pipeline_all import DAIPipeline | |
| from DAI.controlnetvae import ControlNetVAEModel | |
| from DAI.decoder import CustomAutoencoderKL | |
| from diffusers import AutoencoderKL, UNet2DConditionModel | |
| from transformers import CLIPTextModel, AutoTokenizer | |
| pretrained_model_name_or_path = "sjtu-deepvision/dereflection-any-image-v0" | |
| pretrained_model_name_or_path2 = "stabilityai/stable-diffusion-2-1" | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| # 加载模型 | |
| controlnet = ControlNetVAEModel.from_pretrained(pretrained_model_name_or_path, subfolder="controlnet", torch_dtype=weight_dtype).to(device) | |
| unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet", torch_dtype=weight_dtype).to(device) | |
| vae_2 = CustomAutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae_2", torch_dtype=weight_dtype).to(device) | |
| vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path2, subfolder="vae").to(device) | |
| text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path2, subfolder="text_encoder").to(device) | |
| tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path2, subfolder="tokenizer", use_fast=False) | |
| # 创建推理管道 | |
| pipe = DAIPipeline( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| controlnet=controlnet, | |
| safety_checker=None, | |
| scheduler=None, | |
| feature_extractor=None, | |
| t_start=0, | |
| ).to(device) | |
| def resize_image(image, max_size): | |
| """Resize the image so that the maximum side is max_size.""" | |
| width, height = image.size | |
| if max(width, height) > max_size: | |
| if width > height: | |
| new_width = max_size | |
| new_height = int(height * (max_size / width)) | |
| else: | |
| new_height = max_size | |
| new_width = int(width * (max_size / height)) | |
| image = image.resize((new_width, new_height), Image.LANCZOS) | |
| return image | |
| def process_image(input_image, resolution_choice): | |
| # 将 Gradio 输入转换为 PIL 图像 | |
| input_image = Image.fromarray(input_image) | |
| # 根据用户选择设置处理分辨率 | |
| if resolution_choice == "768": | |
| input_image = resize_image(input_image, 768) | |
| processing_resolution = None | |
| else: | |
| if input_image.size[0] > 2560 or input_image.size[1] > 2560: | |
| processing_resolution = 2560 # 限制最大分辨率 | |
| input_image = resize_image(input_image, 2560) | |
| else: | |
| processing_resolution = 0 # 使用原始分辨率 | |
| # 处理图像 | |
| pipe_out = pipe( | |
| image=input_image, | |
| prompt="remove glass reflection", | |
| vae_2=vae_2, | |
| processing_resolution=processing_resolution, | |
| ) | |
| # 将输出转换为图像 | |
| processed_frame = (pipe_out.prediction.clip(-1, 1) + 1) / 2 | |
| processed_frame = (processed_frame[0] * 255).astype(np.uint8) | |
| processed_frame = Image.fromarray(processed_frame) | |
| return input_image, processed_frame # 返回调整后的输入图片和处理后的图片 | |
| # 创建 Gradio 界面 | |
| def create_gradio_interface(): | |
| # 示例图像 | |
| example_images = [ | |
| [os.path.join("files", "image", f"{i}.png"), "768"] for i in range(1, 14) | |
| ] | |
| title = "# Dereflection Any Image" | |
| description = """Official demo for **Dereflection Any Image**. | |
| Please refer to our [paper](), [project page](https://abuuu122.github.io/DAI.github.io/), and [github](https://github.com/Abuuu122/Dereflection-Any-Image) for more details.""" | |
| with gr.Blocks() as demo: | |
| gr.Markdown(title) | |
| gr.Markdown(description) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(label="Input Image", type="numpy") | |
| resolution_choice = gr.Radio( | |
| choices=["768", "Original Resolution"], | |
| label="Processing Resolution", | |
| value="768", # 默认选择原始分辨率 | |
| ) | |
| gr.Markdown( | |
| "Select the resolution for processing the image, 768 is recommended for faster processing and stable performance. Higher resolution may take longer to process, we restrict the maximum resolution to 2560." | |
| ) | |
| submit_btn = gr.Button("Remove Reflection", variant="primary") | |
| with gr.Column(): | |
| output_image = gr.Image(label="Processed Image") | |
| # 添加示例 | |
| gr.Examples( | |
| examples=example_images, | |
| inputs=[input_image, resolution_choice], # 输入组件列表 | |
| outputs=output_image, | |
| fn=process_image, | |
| cache_examples=False, # 缓存结果以加快加载速度 | |
| label="Example Images", | |
| ) | |
| # 绑定按钮点击事件 | |
| submit_btn.click( | |
| fn=process_image, | |
| inputs=[input_image, resolution_choice], # 输入组件列表 | |
| outputs=[input_image, output_image], # 输出组件列表 | |
| ) | |
| return demo | |
| # 主函数 | |
| def main(): | |
| demo = create_gradio_interface() | |
| demo.launch(server_name="0.0.0.0", server_port=7860) | |
| if __name__ == "__main__": | |
| main() |