Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
CHANGED
|
@@ -1,287 +1,99 @@
|
|
| 1 |
-
# Copyright 2024 Anton Obukhov, ETH Zurich. All rights reserved.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
# --------------------------------------------------------------------------
|
| 15 |
-
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
| 16 |
-
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
|
| 17 |
-
# More information about the method can be found at https://marigoldmonodepth.github.io
|
| 18 |
-
# --------------------------------------------------------------------------
|
| 19 |
-
from __future__ import annotations
|
| 20 |
-
|
| 21 |
-
import functools
|
| 22 |
import os
|
| 23 |
-
import tempfile
|
| 24 |
-
|
| 25 |
-
import gradio as gr
|
| 26 |
-
import imageio as imageio
|
| 27 |
import numpy as np
|
| 28 |
-
import
|
| 29 |
-
import torch as torch
|
| 30 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
| 31 |
from PIL import Image
|
| 32 |
-
|
| 33 |
-
from tqdm import tqdm
|
| 34 |
-
|
| 35 |
-
from pathlib import Path
|
| 36 |
-
import gradio
|
| 37 |
-
from gradio.utils import get_cache_folder
|
| 38 |
-
|
| 39 |
from DAI.pipeline_all import DAIPipeline
|
| 40 |
-
|
| 41 |
from DAI.controlnetvae import ControlNetVAEModel
|
| 42 |
-
|
| 43 |
from DAI.decoder import CustomAutoencoderKL
|
| 44 |
-
|
| 45 |
-
from diffusers import (
|
| 46 |
-
AutoencoderKL,
|
| 47 |
-
UNet2DConditionModel,
|
| 48 |
-
)
|
| 49 |
-
|
| 50 |
from transformers import CLIPTextModel, AutoTokenizer
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
#
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
# resolution = 0
|
| 86 |
-
# if max(input_image.size) < 768:
|
| 87 |
-
# resolution = None
|
| 88 |
-
resolution = None
|
| 89 |
-
|
| 90 |
pipe_out = pipe(
|
| 91 |
image=input_image,
|
| 92 |
prompt="remove glass reflection",
|
| 93 |
vae_2=vae_2,
|
| 94 |
-
processing_resolution=
|
| 95 |
)
|
| 96 |
|
|
|
|
| 97 |
processed_frame = (pipe_out.prediction.clip(-1, 1) + 1) / 2
|
| 98 |
processed_frame = (processed_frame[0] * 255).astype(np.uint8)
|
| 99 |
processed_frame = Image.fromarray(processed_frame)
|
| 100 |
-
processed_frame.save(path_out_png)
|
| 101 |
-
yield [input_image, path_out_png]
|
| 102 |
-
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
}
|
| 131 |
-
h2 {
|
| 132 |
-
text-align: center;
|
| 133 |
-
display: block;
|
| 134 |
-
}
|
| 135 |
-
h3 {
|
| 136 |
-
text-align: center;
|
| 137 |
-
display: block;
|
| 138 |
-
}
|
| 139 |
-
.md_feedback li {
|
| 140 |
-
margin-bottom: 0px !important;
|
| 141 |
-
}
|
| 142 |
-
""",
|
| 143 |
-
head="""
|
| 144 |
-
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
|
| 145 |
-
<script>
|
| 146 |
-
window.dataLayer = window.dataLayer || [];
|
| 147 |
-
function gtag() {dataLayer.push(arguments);}
|
| 148 |
-
gtag('js', new Date());
|
| 149 |
-
gtag('config', 'G-1FWSVCGZTG');
|
| 150 |
-
</script>
|
| 151 |
-
""",
|
| 152 |
-
) as demo:
|
| 153 |
-
gr.Markdown(
|
| 154 |
-
"""
|
| 155 |
-
# Dereflection Any Image
|
| 156 |
-
<p align="center">
|
| 157 |
-
"""
|
| 158 |
)
|
| 159 |
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
image_input = gr.Image(
|
| 165 |
-
label="Input Image",
|
| 166 |
-
type="filepath",
|
| 167 |
-
)
|
| 168 |
-
with gr.Row():
|
| 169 |
-
image_submit_btn = gr.Button(
|
| 170 |
-
value="Dereflection", variant="primary"
|
| 171 |
-
)
|
| 172 |
-
image_reset_btn = gr.Button(value="Reset")
|
| 173 |
-
with gr.Column():
|
| 174 |
-
image_output_slider = ImageSlider(
|
| 175 |
-
label="outputs",
|
| 176 |
-
type="filepath",
|
| 177 |
-
show_download_button=True,
|
| 178 |
-
show_share_button=True,
|
| 179 |
-
interactive=False,
|
| 180 |
-
elem_classes="slider",
|
| 181 |
-
# position=0.25,
|
| 182 |
-
)
|
| 183 |
-
|
| 184 |
-
Examples(
|
| 185 |
-
fn=process_pipe_image,
|
| 186 |
-
examples=sorted([
|
| 187 |
-
os.path.join("files", "image", name)
|
| 188 |
-
for name in os.listdir(os.path.join("files", "image"))
|
| 189 |
-
]),
|
| 190 |
-
inputs=[image_input],
|
| 191 |
-
outputs=[image_output_slider],
|
| 192 |
-
cache_examples=False,
|
| 193 |
-
directory_name="examples_image",
|
| 194 |
-
)
|
| 195 |
-
|
| 196 |
-
### Image tab
|
| 197 |
-
image_submit_btn.click(
|
| 198 |
-
fn=process_image_check,
|
| 199 |
-
inputs=image_input,
|
| 200 |
-
outputs=None,
|
| 201 |
-
preprocess=False,
|
| 202 |
-
queue=False,
|
| 203 |
-
).success(
|
| 204 |
-
fn=process_pipe_image,
|
| 205 |
-
inputs=[
|
| 206 |
-
image_input,
|
| 207 |
-
],
|
| 208 |
-
outputs=[image_output_slider],
|
| 209 |
-
concurrency_limit=1,
|
| 210 |
-
)
|
| 211 |
-
|
| 212 |
-
image_reset_btn.click(
|
| 213 |
-
fn=lambda: (
|
| 214 |
-
None,
|
| 215 |
-
None,
|
| 216 |
-
None,
|
| 217 |
-
),
|
| 218 |
-
inputs=[],
|
| 219 |
-
outputs=[
|
| 220 |
-
image_input,
|
| 221 |
-
image_output_slider,
|
| 222 |
-
],
|
| 223 |
-
queue=False,
|
| 224 |
-
)
|
| 225 |
-
|
| 226 |
-
### Server launch
|
| 227 |
-
|
| 228 |
-
demo.queue(
|
| 229 |
-
api_open=False,
|
| 230 |
-
).launch(
|
| 231 |
-
server_name="0.0.0.0",
|
| 232 |
-
server_port=7860,
|
| 233 |
)
|
| 234 |
|
|
|
|
| 235 |
|
|
|
|
| 236 |
def main():
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 240 |
-
|
| 241 |
-
weight_dtype = torch.float32
|
| 242 |
-
pretrained_model_name_or_path = "sjtu-deepvision/dereflection-any-image-v0"
|
| 243 |
-
pretrained_model_name_or_path2 = "stabilityai/stable-diffusion-2-1"
|
| 244 |
-
revision = None
|
| 245 |
-
variant = None
|
| 246 |
-
|
| 247 |
-
# Load the model
|
| 248 |
-
controlnet = ControlNetVAEModel.from_pretrained(pretrained_model_name_or_path, subfolder="controlnet", torch_dtype=weight_dtype).to(device)
|
| 249 |
-
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet", torch_dtype=weight_dtype).to(device)
|
| 250 |
-
vae_2 = CustomAutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae_2", torch_dtype=weight_dtype).to(device)
|
| 251 |
-
|
| 252 |
-
vae = AutoencoderKL.from_pretrained(
|
| 253 |
-
pretrained_model_name_or_path2, subfolder="vae", revision=revision, variant=variant
|
| 254 |
-
).to(device)
|
| 255 |
-
|
| 256 |
-
text_encoder = CLIPTextModel.from_pretrained(
|
| 257 |
-
pretrained_model_name_or_path2, subfolder="text_encoder", revision=revision, variant=variant
|
| 258 |
-
).to(device)
|
| 259 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 260 |
-
pretrained_model_name_or_path2,
|
| 261 |
-
subfolder="tokenizer",
|
| 262 |
-
revision=revision,
|
| 263 |
-
use_fast=False,
|
| 264 |
-
)
|
| 265 |
-
pipe = DAIPipeline(
|
| 266 |
-
vae=vae,
|
| 267 |
-
text_encoder=text_encoder,
|
| 268 |
-
tokenizer=tokenizer,
|
| 269 |
-
unet=unet,
|
| 270 |
-
controlnet=controlnet,
|
| 271 |
-
safety_checker=None,
|
| 272 |
-
scheduler=None,
|
| 273 |
-
feature_extractor=None,
|
| 274 |
-
t_start=0,
|
| 275 |
-
).to(device)
|
| 276 |
-
|
| 277 |
-
try:
|
| 278 |
-
import xformers
|
| 279 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 280 |
-
except:
|
| 281 |
-
pass # run without xformers
|
| 282 |
-
|
| 283 |
-
run_demo_server(pipe, vae_2)
|
| 284 |
-
|
| 285 |
|
| 286 |
if __name__ == "__main__":
|
| 287 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
+
import torch
|
|
|
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from DAI.pipeline_all import DAIPipeline
|
|
|
|
| 7 |
from DAI.controlnetvae import ControlNetVAEModel
|
|
|
|
| 8 |
from DAI.decoder import CustomAutoencoderKL
|
| 9 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
from transformers import CLIPTextModel, AutoTokenizer
|
| 11 |
|
| 12 |
+
# Initialize device and model paths
|
| 13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 14 |
+
weight_dtype = torch.float32
|
| 15 |
+
pretrained_model_name_or_path = "sjtu-deepvision/dereflection-any-image-v0"
|
| 16 |
+
pretrained_model_name_or_path2 = "stabilityai/stable-diffusion-2-1"
|
| 17 |
+
|
| 18 |
+
# Load the model components
|
| 19 |
+
controlnet = ControlNetVAEModel.from_pretrained(pretrained_model_name_or_path, subfolder="controlnet", torch_dtype=weight_dtype).to(device)
|
| 20 |
+
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet", torch_dtype=weight_dtype).to(device)
|
| 21 |
+
vae_2 = CustomAutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae_2", torch_dtype=weight_dtype).to(device)
|
| 22 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path2, subfolder="vae").to(device)
|
| 23 |
+
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path2, subfolder="text_encoder").to(device)
|
| 24 |
+
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path2, subfolder="tokenizer", use_fast=False)
|
| 25 |
+
|
| 26 |
+
# Create the pipeline
|
| 27 |
+
pipe = DAIPipeline(
|
| 28 |
+
vae=vae,
|
| 29 |
+
text_encoder=text_encoder,
|
| 30 |
+
tokenizer=tokenizer,
|
| 31 |
+
unet=unet,
|
| 32 |
+
controlnet=controlnet,
|
| 33 |
+
safety_checker=None,
|
| 34 |
+
scheduler=None,
|
| 35 |
+
feature_extractor=None,
|
| 36 |
+
t_start=0,
|
| 37 |
+
).to(device)
|
| 38 |
+
|
| 39 |
+
# Function to process the image
|
| 40 |
+
def process_image(input_image):
|
| 41 |
+
# Convert Gradio input to PIL Image
|
| 42 |
+
input_image = Image.fromarray(input_image)
|
| 43 |
+
|
| 44 |
+
# Process the image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
pipe_out = pipe(
|
| 46 |
image=input_image,
|
| 47 |
prompt="remove glass reflection",
|
| 48 |
vae_2=vae_2,
|
| 49 |
+
processing_resolution=None,
|
| 50 |
)
|
| 51 |
|
| 52 |
+
# Convert the output to an image
|
| 53 |
processed_frame = (pipe_out.prediction.clip(-1, 1) + 1) / 2
|
| 54 |
processed_frame = (processed_frame[0] * 255).astype(np.uint8)
|
| 55 |
processed_frame = Image.fromarray(processed_frame)
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
return processed_frame
|
| 58 |
+
|
| 59 |
+
# Gradio interface
|
| 60 |
+
def create_gradio_interface():
|
| 61 |
+
# Example images
|
| 62 |
+
example_images = [
|
| 63 |
+
os.path.join("files", "image", f"{i}.png") for i in range(1, 9)
|
| 64 |
+
]
|
| 65 |
+
|
| 66 |
+
with gr.Blocks() as demo:
|
| 67 |
+
gr.Markdown("# Dereflection Any Image")
|
| 68 |
+
with gr.Row():
|
| 69 |
+
with gr.Column():
|
| 70 |
+
input_image = gr.Image(label="Input Image", type="numpy")
|
| 71 |
+
submit_btn = gr.Button("Remove Reflection", variant="primary")
|
| 72 |
+
with gr.Column():
|
| 73 |
+
output_image = gr.Image(label="Processed Image")
|
| 74 |
+
|
| 75 |
+
# Add examples
|
| 76 |
+
gr.Examples(
|
| 77 |
+
examples=example_images,
|
| 78 |
+
inputs=input_image,
|
| 79 |
+
outputs=output_image,
|
| 80 |
+
fn=process_image,
|
| 81 |
+
cache_examples=False, # Cache results for faster loading
|
| 82 |
+
label="Example Images",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
)
|
| 84 |
|
| 85 |
+
submit_btn.click(
|
| 86 |
+
fn=process_image,
|
| 87 |
+
inputs=input_image,
|
| 88 |
+
outputs=output_image,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
)
|
| 90 |
|
| 91 |
+
return demo
|
| 92 |
|
| 93 |
+
# Main function to launch the Gradio app
|
| 94 |
def main():
|
| 95 |
+
demo = create_gradio_interface()
|
| 96 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
if __name__ == "__main__":
|
| 99 |
+
main()
|