Spaces:
Runtime error
Runtime error
first commit -- grad boost demo
Browse files
app.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
from sklearn.datasets import load_iris
|
| 4 |
+
from sklearn.ensemble import GradientBoostingClassifier
|
| 5 |
+
from sklearn.model_selection import train_test_split
|
| 6 |
+
from sklearn.metrics import accuracy_score, confusion_matrix
|
| 7 |
+
|
| 8 |
+
# 1. Load dataset
|
| 9 |
+
iris = load_iris()
|
| 10 |
+
X, y = iris.data, iris.target
|
| 11 |
+
feature_names = iris.feature_names
|
| 12 |
+
class_names = iris.target_names
|
| 13 |
+
|
| 14 |
+
# Split into train/test
|
| 15 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
| 16 |
+
X, y, test_size=0.3, random_state=42
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
# 2. Define a function that takes hyperparameters and returns model accuracy + confusion matrix
|
| 20 |
+
def train_and_evaluate(learning_rate, n_estimators, max_depth):
|
| 21 |
+
# Train model
|
| 22 |
+
clf = GradientBoostingClassifier(
|
| 23 |
+
learning_rate=learning_rate,
|
| 24 |
+
n_estimators=n_estimators,
|
| 25 |
+
max_depth=int(max_depth),
|
| 26 |
+
random_state=42
|
| 27 |
+
)
|
| 28 |
+
clf.fit(X_train, y_train)
|
| 29 |
+
|
| 30 |
+
# Predict on test data
|
| 31 |
+
y_pred = clf.predict(X_test)
|
| 32 |
+
|
| 33 |
+
# Calculate metrics
|
| 34 |
+
accuracy = accuracy_score(y_test, y_pred)
|
| 35 |
+
cm = confusion_matrix(y_test, y_pred)
|
| 36 |
+
|
| 37 |
+
# Convert confusion matrix to a more display-friendly format
|
| 38 |
+
cm_display = ""
|
| 39 |
+
for row in cm:
|
| 40 |
+
cm_display += str(row) + "\n"
|
| 41 |
+
|
| 42 |
+
return f"Accuracy: {accuracy:.3f}\nConfusion Matrix:\n{cm_display}"
|
| 43 |
+
|
| 44 |
+
# 3. Define a prediction function for user-supplied feature values
|
| 45 |
+
def predict_species(sepal_length, sepal_width, petal_length, petal_width,
|
| 46 |
+
learning_rate, n_estimators, max_depth):
|
| 47 |
+
# Train a new model using same hyperparams
|
| 48 |
+
clf = GradientBoostingClassifier(
|
| 49 |
+
learning_rate=learning_rate,
|
| 50 |
+
n_estimators=n_estimators,
|
| 51 |
+
max_depth=int(max_depth),
|
| 52 |
+
random_state=42
|
| 53 |
+
)
|
| 54 |
+
clf.fit(X_train, y_train)
|
| 55 |
+
|
| 56 |
+
# Predict species
|
| 57 |
+
user_sample = np.array([[sepal_length, sepal_width, petal_length, petal_width]])
|
| 58 |
+
prediction = clf.predict(user_sample)[0]
|
| 59 |
+
return f"Predicted species: {class_names[prediction]}"
|
| 60 |
+
|
| 61 |
+
# 4. Build the Gradio interface
|
| 62 |
+
|
| 63 |
+
# Inputs to tune hyperparameters
|
| 64 |
+
hyperparam_inputs = [
|
| 65 |
+
gr.inputs.Slider(0.01, 1.0, step=0.01, default=0.1, label="learning_rate"),
|
| 66 |
+
gr.inputs.Slider(50, 300, step=50, default=100, label="n_estimators"),
|
| 67 |
+
gr.inputs.Slider(1, 10, step=1, default=3, label="max_depth")
|
| 68 |
+
]
|
| 69 |
+
|
| 70 |
+
# Button or automatic “live” updates
|
| 71 |
+
training_interface = gr.Interface(
|
| 72 |
+
fn=train_and_evaluate,
|
| 73 |
+
inputs=hyperparam_inputs,
|
| 74 |
+
outputs="text",
|
| 75 |
+
title="Gradient Boosting Training and Evaluation",
|
| 76 |
+
description="Train a GradientBoostingClassifier on the Iris dataset with different hyperparameters."
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
# Inputs for real-time prediction
|
| 80 |
+
feature_inputs = [
|
| 81 |
+
gr.inputs.Number(default=5.1, label=feature_names[0]),
|
| 82 |
+
gr.inputs.Number(default=3.5, label=feature_names[1]),
|
| 83 |
+
gr.inputs.Number(default=1.4, label=feature_names[2]),
|
| 84 |
+
gr.inputs.Number(default=0.2, label=feature_names[3])
|
| 85 |
+
] + hyperparam_inputs
|
| 86 |
+
|
| 87 |
+
prediction_interface = gr.Interface(
|
| 88 |
+
fn=predict_species,
|
| 89 |
+
inputs=feature_inputs,
|
| 90 |
+
outputs="text",
|
| 91 |
+
title="Iris Species Prediction",
|
| 92 |
+
description="Use a GradientBoostingClassifier to predict Iris species from user input."
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
demo = gr.TabbedInterface([training_interface, prediction_interface],
|
| 96 |
+
["Train & Evaluate", "Predict"])
|
| 97 |
+
|
| 98 |
+
# Launch the Gradio app
|
| 99 |
+
demo.launch()
|