Spaces:
Runtime error
Runtime error
fix visualisations + add heatmap
Browse files
app.py
CHANGED
|
@@ -1,22 +1,28 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
|
|
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
from sklearn.datasets import load_iris
|
| 5 |
from sklearn.ensemble import GradientBoostingClassifier
|
| 6 |
from sklearn.model_selection import train_test_split
|
| 7 |
from sklearn.metrics import accuracy_score, confusion_matrix
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
iris = load_iris()
|
| 10 |
X, y = iris.data, iris.target
|
| 11 |
feature_names = iris.feature_names
|
| 12 |
class_names = iris.target_names
|
| 13 |
|
|
|
|
| 14 |
X_train, X_test, y_train, y_test = train_test_split(
|
| 15 |
X, y, test_size=0.3, random_state=42
|
| 16 |
)
|
| 17 |
|
| 18 |
def train_and_evaluate(learning_rate, n_estimators, max_depth):
|
| 19 |
-
# Train model
|
| 20 |
clf = GradientBoostingClassifier(
|
| 21 |
learning_rate=learning_rate,
|
| 22 |
n_estimators=n_estimators,
|
|
@@ -25,29 +31,52 @@ def train_and_evaluate(learning_rate, n_estimators, max_depth):
|
|
| 25 |
)
|
| 26 |
clf.fit(X_train, y_train)
|
| 27 |
|
| 28 |
-
# Predict
|
| 29 |
y_pred = clf.predict(X_test)
|
|
|
|
|
|
|
| 30 |
accuracy = accuracy_score(y_test, y_pred)
|
|
|
|
|
|
|
| 31 |
cm = confusion_matrix(y_test, y_pred)
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
|
| 35 |
|
| 36 |
-
#
|
| 37 |
importances = clf.feature_importances_
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
def predict_species(sepal_length, sepal_width, petal_length, petal_width,
|
| 53 |
learning_rate, n_estimators, max_depth):
|
|
@@ -65,13 +94,14 @@ def predict_species(sepal_length, sepal_width, petal_length, petal_width,
|
|
| 65 |
with gr.Blocks() as demo:
|
| 66 |
with gr.Tab("Train & Evaluate"):
|
| 67 |
gr.Markdown("## Train a GradientBoostingClassifier on the Iris dataset")
|
|
|
|
| 68 |
learning_rate_slider = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="learning_rate")
|
| 69 |
n_estimators_slider = gr.Slider(50, 300, value=100, step=50, label="n_estimators")
|
| 70 |
max_depth_slider = gr.Slider(1, 10, value=3, step=1, label="max_depth")
|
| 71 |
|
| 72 |
train_button = gr.Button("Train & Evaluate")
|
| 73 |
output_text = gr.Textbox(label="Results")
|
| 74 |
-
output_plot = gr.Plot(label="Feature
|
| 75 |
|
| 76 |
train_button.click(
|
| 77 |
fn=train_and_evaluate,
|
|
@@ -81,14 +111,15 @@ with gr.Blocks() as demo:
|
|
| 81 |
|
| 82 |
with gr.Tab("Predict"):
|
| 83 |
gr.Markdown("## Predict Iris Species with GradientBoostingClassifier")
|
|
|
|
| 84 |
sepal_length_input = gr.Number(value=5.1, label=feature_names[0])
|
| 85 |
-
sepal_width_input
|
| 86 |
petal_length_input = gr.Number(value=1.4, label=feature_names[2])
|
| 87 |
-
petal_width_input
|
| 88 |
|
| 89 |
-
learning_rate_slider2
|
| 90 |
-
n_estimators_slider2
|
| 91 |
-
max_depth_slider2
|
| 92 |
|
| 93 |
predict_button = gr.Button("Predict")
|
| 94 |
prediction_text = gr.Textbox(label="Prediction")
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
+
import matplotlib
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
from sklearn.datasets import load_iris
|
| 6 |
from sklearn.ensemble import GradientBoostingClassifier
|
| 7 |
from sklearn.model_selection import train_test_split
|
| 8 |
from sklearn.metrics import accuracy_score, confusion_matrix
|
| 9 |
|
| 10 |
+
# This line ensures Matplotlib doesn't try to open windows in certain environments:
|
| 11 |
+
matplotlib.use('Agg')
|
| 12 |
+
|
| 13 |
+
# Load the Iris dataset
|
| 14 |
iris = load_iris()
|
| 15 |
X, y = iris.data, iris.target
|
| 16 |
feature_names = iris.feature_names
|
| 17 |
class_names = iris.target_names
|
| 18 |
|
| 19 |
+
# Train/test split
|
| 20 |
X_train, X_test, y_train, y_test = train_test_split(
|
| 21 |
X, y, test_size=0.3, random_state=42
|
| 22 |
)
|
| 23 |
|
| 24 |
def train_and_evaluate(learning_rate, n_estimators, max_depth):
|
| 25 |
+
# Train the model
|
| 26 |
clf = GradientBoostingClassifier(
|
| 27 |
learning_rate=learning_rate,
|
| 28 |
n_estimators=n_estimators,
|
|
|
|
| 31 |
)
|
| 32 |
clf.fit(X_train, y_train)
|
| 33 |
|
| 34 |
+
# Predict on test set
|
| 35 |
y_pred = clf.predict(X_test)
|
| 36 |
+
|
| 37 |
+
# Calculate accuracy
|
| 38 |
accuracy = accuracy_score(y_test, y_pred)
|
| 39 |
+
|
| 40 |
+
# Calculate confusion matrix
|
| 41 |
cm = confusion_matrix(y_test, y_pred)
|
| 42 |
|
| 43 |
+
# Create a single figure with 2 subplots
|
| 44 |
+
fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))
|
| 45 |
|
| 46 |
+
# --- Subplot 1: Feature Importances ---
|
| 47 |
importances = clf.feature_importances_
|
| 48 |
+
axs[0].barh(range(len(feature_names)), importances, color='skyblue')
|
| 49 |
+
axs[0].set_yticks(range(len(feature_names)))
|
| 50 |
+
axs[0].set_yticklabels(feature_names)
|
| 51 |
+
axs[0].set_xlabel("Importance")
|
| 52 |
+
axs[0].set_title("Feature Importances")
|
| 53 |
+
|
| 54 |
+
# --- Subplot 2: Confusion Matrix Heatmap ---
|
| 55 |
+
im = axs[1].imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
|
| 56 |
+
axs[1].set_title("Confusion Matrix")
|
| 57 |
+
# Add colorbar
|
| 58 |
+
cbar = fig.colorbar(im, ax=axs[1])
|
| 59 |
+
# Tick marks for x/y axes
|
| 60 |
+
axs[1].set_xticks(range(len(class_names)))
|
| 61 |
+
axs[1].set_yticks(range(len(class_names)))
|
| 62 |
+
axs[1].set_xticklabels(class_names, rotation=45, ha="right")
|
| 63 |
+
axs[1].set_yticklabels(class_names)
|
| 64 |
+
axs[1].set_ylabel('True Label')
|
| 65 |
+
axs[1].set_xlabel('Predicted Label')
|
| 66 |
+
|
| 67 |
+
# Write the counts in each cell
|
| 68 |
+
thresh = cm.max() / 2.0
|
| 69 |
+
for i in range(cm.shape[0]):
|
| 70 |
+
for j in range(cm.shape[1]):
|
| 71 |
+
color = "white" if cm[i, j] > thresh else "black"
|
| 72 |
+
axs[1].text(j, i, format(cm[i, j], "d"),
|
| 73 |
+
ha="center", va="center", color=color)
|
| 74 |
+
|
| 75 |
+
plt.tight_layout()
|
| 76 |
+
|
| 77 |
+
# Return textual results + the figure
|
| 78 |
+
results_text = f"Accuracy: {accuracy:.3f}"
|
| 79 |
+
return results_text, fig
|
| 80 |
|
| 81 |
def predict_species(sepal_length, sepal_width, petal_length, petal_width,
|
| 82 |
learning_rate, n_estimators, max_depth):
|
|
|
|
| 94 |
with gr.Blocks() as demo:
|
| 95 |
with gr.Tab("Train & Evaluate"):
|
| 96 |
gr.Markdown("## Train a GradientBoostingClassifier on the Iris dataset")
|
| 97 |
+
|
| 98 |
learning_rate_slider = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="learning_rate")
|
| 99 |
n_estimators_slider = gr.Slider(50, 300, value=100, step=50, label="n_estimators")
|
| 100 |
max_depth_slider = gr.Slider(1, 10, value=3, step=1, label="max_depth")
|
| 101 |
|
| 102 |
train_button = gr.Button("Train & Evaluate")
|
| 103 |
output_text = gr.Textbox(label="Results")
|
| 104 |
+
output_plot = gr.Plot(label="Feature Importances & Confusion Matrix")
|
| 105 |
|
| 106 |
train_button.click(
|
| 107 |
fn=train_and_evaluate,
|
|
|
|
| 111 |
|
| 112 |
with gr.Tab("Predict"):
|
| 113 |
gr.Markdown("## Predict Iris Species with GradientBoostingClassifier")
|
| 114 |
+
|
| 115 |
sepal_length_input = gr.Number(value=5.1, label=feature_names[0])
|
| 116 |
+
sepal_width_input = gr.Number(value=3.5, label=feature_names[1])
|
| 117 |
petal_length_input = gr.Number(value=1.4, label=feature_names[2])
|
| 118 |
+
petal_width_input = gr.Number(value=0.2, label=feature_names[3])
|
| 119 |
|
| 120 |
+
learning_rate_slider2 = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="learning_rate")
|
| 121 |
+
n_estimators_slider2 = gr.Slider(50, 300, value=100, step=50, label="n_estimators")
|
| 122 |
+
max_depth_slider2 = gr.Slider(1, 10, value=3, step=1, label="max_depth")
|
| 123 |
|
| 124 |
predict_button = gr.Button("Predict")
|
| 125 |
prediction_text = gr.Textbox(label="Prediction")
|