Spaces:
Running
on
Zero
Running
on
Zero
| from typing import List | |
| import torch | |
| from torchvision import transforms | |
| from transformers import CLIPImageProcessor | |
| from transformers import CLIPVisionModel as OriginalCLIPVisionModel | |
| from ._clip import CLIPVisionModel | |
| from PIL import Image | |
| import torch.nn.functional as F | |
| import torch.nn as nn | |
| import os | |
| def is_torch2_available(): | |
| return hasattr(F, "scaled_dot_product_attention") | |
| if is_torch2_available(): | |
| from .attention_processor import SSRAttnProcessor2_0 as SSRAttnProcessor, AttnProcessor2_0 as AttnProcessor | |
| else: | |
| from .attention_processor import SSRAttnProcessor, AttnProcessor | |
| from .resampler import Resampler | |
| class detail_encoder(torch.nn.Module): | |
| """from SSR-encoder""" | |
| def __init__(self, unet, image_encoder_path, device="cuda", dtype=torch.float32): | |
| super().__init__() | |
| self.device = device | |
| self.dtype = dtype | |
| # load image encoder | |
| clip_encoder = OriginalCLIPVisionModel.from_pretrained(image_encoder_path) | |
| self.image_encoder = CLIPVisionModel(clip_encoder.config) | |
| state_dict = clip_encoder.state_dict() | |
| self.image_encoder.load_state_dict(state_dict, strict=False) | |
| self.image_encoder.to(self.device, self.dtype) | |
| del clip_encoder | |
| self.clip_image_processor = CLIPImageProcessor() | |
| # load SSR layers | |
| attn_procs = {} | |
| for name in unet.attn_processors.keys(): | |
| cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
| if name.startswith("mid_block"): | |
| hidden_size = unet.config.block_out_channels[-1] | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| hidden_size = unet.config.block_out_channels[block_id] | |
| if cross_attention_dim is None: | |
| attn_procs[name] = AttnProcessor() | |
| else: | |
| attn_procs[name] = SSRAttnProcessor(hidden_size=hidden_size, cross_attention_dim=1024, scale=1).to(self.device, dtype=self.dtype) | |
| unet.set_attn_processor(attn_procs) | |
| adapter_modules = torch.nn.ModuleList(unet.attn_processors.values()) | |
| self.SSR_layers = adapter_modules | |
| self.SSR_layers.to(self.device, dtype=self.dtype) | |
| self.resampler = self.init_proj() | |
| def init_proj(self): | |
| resampler = Resampler().to(self.device, dtype=self.dtype) | |
| return resampler | |
| def forward(self, img): | |
| image_embeds = self.image_encoder(img, output_hidden_states=True)['hidden_states'][2::2] | |
| image_embeds = torch.cat(image_embeds, dim=1) | |
| image_embeds = self.resampler(image_embeds) | |
| return image_embeds | |
| def get_image_embeds(self, pil_image): | |
| if isinstance(pil_image, Image.Image): | |
| pil_image = [pil_image] | |
| clip_image = [] | |
| for pil in pil_image: | |
| tensor_image = self.clip_image_processor(images=pil, return_tensors="pt").pixel_values.to(self.device, dtype=self.dtype) | |
| clip_image.append(tensor_image) | |
| clip_image = torch.cat(clip_image, dim=0) | |
| # cond | |
| clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True)['hidden_states'][2::2] # 1 257*12 1024 | |
| clip_image_embeds = torch.cat(clip_image_embeds, dim=1) | |
| uncond_clip_image_embeds = self.image_encoder(torch.zeros_like(clip_image), output_hidden_states=True)['hidden_states'][2::2] | |
| uncond_clip_image_embeds = torch.cat(uncond_clip_image_embeds, dim=1) | |
| clip_image_embeds = self.resampler(clip_image_embeds) | |
| uncond_clip_image_embeds = self.resampler(uncond_clip_image_embeds) | |
| return clip_image_embeds, uncond_clip_image_embeds | |
| def generate( | |
| self, | |
| id_image, | |
| makeup_image, | |
| seed=None, | |
| guidance_scale=2, | |
| num_inference_steps=30, | |
| pipe=None, | |
| **kwargs, | |
| ): | |
| image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(makeup_image) | |
| prompt_embeds = image_prompt_embeds | |
| negative_prompt_embeds = uncond_image_prompt_embeds | |
| generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None | |
| image = pipe( | |
| image=id_image, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| **kwargs, | |
| ).images[0] | |
| return image |