Spaces:
Running
on
Zero
Running
on
Zero
| import PIL | |
| import numpy as np | |
| class MIDITokenizer: | |
| def __init__(self): | |
| self.vocab_size = 0 | |
| def allocate_ids(size): | |
| ids = [self.vocab_size + i for i in range(size)] | |
| self.vocab_size += size | |
| return ids | |
| self.pad_id = allocate_ids(1)[0] | |
| self.bos_id = allocate_ids(1)[0] | |
| self.eos_id = allocate_ids(1)[0] | |
| self.events = { | |
| "note": ["time1", "time2", "track", "duration", "channel", "pitch", "velocity"], | |
| "patch_change": ["time1", "time2", "track", "channel", "patch"], | |
| "control_change": ["time1", "time2", "track", "channel", "controller", "value"], | |
| "set_tempo": ["time1", "time2", "track", "bpm"], | |
| } | |
| self.event_parameters = { | |
| "time1": 128, "time2": 16, "duration": 2048, "track": 128, "channel": 16, "pitch": 128, "velocity": 128, | |
| "patch": 128, "controller": 128, "value": 128, "bpm": 256 | |
| } | |
| self.event_ids = {e: allocate_ids(1)[0] for e in self.events.keys()} | |
| self.id_events = {i: e for e, i in self.event_ids.items()} | |
| self.parameter_ids = {p: allocate_ids(s) for p, s in self.event_parameters.items()} | |
| self.max_token_seq = max([len(ps) for ps in self.events.values()]) + 1 | |
| def tempo2bpm(self, tempo): | |
| tempo = tempo / 10 ** 6 # us to s | |
| bpm = 60 / tempo | |
| return bpm | |
| def bpm2tempo(self, bpm): | |
| if bpm == 0: | |
| bpm = 1 | |
| tempo = int((60 / bpm) * 10 ** 6) | |
| return tempo | |
| def tokenize(self, midi_score, add_bos_eos=True): | |
| ticks_per_beat = midi_score[0] | |
| event_list = {} | |
| track_num = len(midi_score[1:]) | |
| for track_idx, track in enumerate(midi_score[1:129]): | |
| for event in track: | |
| t = round(16 * event[1] / ticks_per_beat) | |
| new_event = [event[0], t // 16, t % 16, track_idx] + event[2:] | |
| if event[0] == "note": | |
| new_event[4] = max(1, round(16 * new_event[4] / ticks_per_beat)) | |
| elif event[0] == "set_tempo": | |
| new_event[4] = int(self.tempo2bpm(new_event[4])) | |
| key = hash(tuple(new_event[:-1])) | |
| event_list[key] = new_event | |
| event_list = list(event_list.values()) | |
| event_list = sorted(event_list, key=lambda e: (e[1] * 16 + e[2]) * track_num + e[3]) | |
| midi_seq = [] | |
| last_t1 = 0 | |
| for event in event_list: | |
| name = event[0] | |
| if name in self.event_ids: | |
| params = event[1:] | |
| cur_t1 = params[0] | |
| params[0] = params[0] - last_t1 | |
| if not all([0 <= params[i] < self.event_parameters[p] for i, p in enumerate(self.events[name])]): | |
| continue | |
| tokens = [self.event_ids[name]] + [self.parameter_ids[p][params[i]] | |
| for i, p in enumerate(self.events[name])] | |
| tokens += [self.pad_id] * (self.max_token_seq - len(tokens)) | |
| midi_seq.append(tokens) | |
| last_t1 = cur_t1 | |
| if add_bos_eos: | |
| bos = [self.bos_id] + [self.pad_id] * (self.max_token_seq - 1) | |
| eos = [self.eos_id] + [self.pad_id] * (self.max_token_seq - 1) | |
| midi_seq = [bos] + midi_seq + [eos] | |
| return midi_seq | |
| def event2tokens(self, event): | |
| name = event[0] | |
| params = event[1:] | |
| tokens = [self.event_ids[name]] + [self.parameter_ids[p][params[i]] | |
| for i, p in enumerate(self.events[name])] | |
| tokens += [self.pad_id] * (self.max_token_seq - len(tokens)) | |
| return tokens | |
| def detokenize(self, midi_seq): | |
| ticks_per_beat = 480 | |
| tracks_dict = {} | |
| t1 = 0 | |
| for tokens in midi_seq: | |
| if tokens[0] in self.id_events: | |
| name = self.id_events[tokens[0]] | |
| if len(tokens) <= len(self.events[name]): | |
| continue | |
| params = tokens[1:] | |
| params = [params[i] - self.parameter_ids[p][0] for i, p in enumerate(self.events[name])] | |
| if not all([0 <= params[i] < self.event_parameters[p] for i, p in enumerate(self.events[name])]): | |
| continue | |
| event = [name] + params | |
| if name == "set_tempo": | |
| event[4] = self.bpm2tempo(event[4]) | |
| if event[0] == "note": | |
| event[4] = int(event[4] * ticks_per_beat / 16) | |
| t1 += event[1] | |
| t = t1 * 16 + event[2] | |
| t = int(t * ticks_per_beat / 16) | |
| track_idx = event[3] | |
| if track_idx not in tracks_dict: | |
| tracks_dict[track_idx] = [] | |
| tracks_dict[track_idx].append([event[0], t] + event[4:]) | |
| tracks = list(tracks_dict.values()) | |
| for i in range(len(tracks)): | |
| track = tracks[i] | |
| track = sorted(track, key=lambda e: e[1]) | |
| last_note_t = {} | |
| for e in reversed(track): | |
| if e[0] == "note": | |
| t, d, c, p = e[1:5] | |
| key = (c, p) | |
| if key in last_note_t: | |
| d = min(d, max(last_note_t[key] - t, 0)) # to avoid note overlap | |
| last_note_t[key] = t | |
| e[2] = d | |
| tracks[i] = track | |
| return [ticks_per_beat, *tracks] | |
| def midi2img(self, midi_score): | |
| ticks_per_beat = midi_score[0] | |
| notes = [] | |
| max_time = 1 | |
| track_num = len(midi_score[1:]) | |
| for track_idx, track in enumerate(midi_score[1:]): | |
| for event in track: | |
| t = round(16 * event[1] / ticks_per_beat) | |
| if event[0] == "note": | |
| d = max(1, round(16 * event[2] / ticks_per_beat)) | |
| c, p = event[3:5] | |
| max_time = max(max_time, t + d + 1) | |
| notes.append((track_idx, c, p, t, d)) | |
| img = np.zeros((128, max_time, 3), dtype=np.uint8) | |
| colors = {(i, j): np.random.randint(50, 256, 3) for i in range(track_num) for j in range(16)} | |
| for note in notes: | |
| tr, c, p, t, d = note | |
| img[p, t: t + d] = colors[(tr, c)] | |
| img = PIL.Image.fromarray(np.flip(img, 0)) | |
| return img | |