Spaces:
Runtime error
Runtime error
| # Copyright 2022 Google LLC | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import numpy as np | |
| import torch | |
| from typing import Optional, Union, Tuple, Dict | |
| from PIL import Image | |
| def save_images(images,dest, num_rows=1, offset_ratio=0.02): | |
| if type(images) is list: | |
| num_empty = len(images) % num_rows | |
| elif images.ndim == 4: | |
| num_empty = images.shape[0] % num_rows | |
| else: | |
| images = [images] | |
| num_empty = 0 | |
| pil_img = Image.fromarray(images[-1]) | |
| pil_img.save(dest) | |
| # display(pil_img) | |
| def save_image(images,dest, num_rows=1, offset_ratio=0.02): | |
| print(images.shape) | |
| pil_img = Image.fromarray(images[0]) | |
| pil_img.save(dest) | |
| def register_attention_control(model, controller): | |
| class AttnProcessor(): | |
| def __init__(self,place_in_unet): | |
| self.place_in_unet = place_in_unet | |
| def __call__(self, | |
| attn, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| temb=None, | |
| scale=1.0,): | |
| # The `Attention` class can call different attention processors / attention functions | |
| residual = hidden_states | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| h = attn.heads | |
| is_cross = encoder_hidden_states is not None | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| q = attn.to_q(hidden_states) | |
| k = attn.to_k(encoder_hidden_states) | |
| v = attn.to_v(encoder_hidden_states) | |
| q = attn.head_to_batch_dim(q) | |
| k = attn.head_to_batch_dim(k) | |
| v = attn.head_to_batch_dim(v) | |
| if not is_cross: | |
| q,k,v = controller.self_attn_forward(q, k, v, attn.heads) | |
| attention_probs = attn.get_attention_scores(q, k, attention_mask) | |
| if is_cross: | |
| attention_probs = controller(attention_probs , is_cross, self.place_in_unet) | |
| # else: | |
| # out = controller.self_attn_forward(q, k, v, sim, attention_probs , is_cross, self.place_in_unet, attn.heads, scale=attn.scale) | |
| hidden_states = torch.bmm(attention_probs, v) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states, scale=scale) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| def register_recr(net_, count, place_in_unet): | |
| for idx, m in enumerate(net_.modules()): | |
| # print(m.__class__.__name__) | |
| if m.__class__.__name__ == "Attention": | |
| count+=1 | |
| m.processor = AttnProcessor( place_in_unet) | |
| return count | |
| cross_att_count = 0 | |
| sub_nets = model.unet.named_children() | |
| for net in sub_nets: | |
| if "down" in net[0]: | |
| cross_att_count += register_recr(net[1], 0, "down") | |
| elif "up" in net[0]: | |
| cross_att_count += register_recr(net[1], 0, "up") | |
| elif "mid" in net[0]: | |
| cross_att_count += register_recr(net[1], 0, "mid") | |
| controller.num_att_layers = cross_att_count | |
| def get_word_inds(text: str, word_place: int, tokenizer): | |
| split_text = text.split(" ") | |
| if type(word_place) is str: | |
| word_place = [i for i, word in enumerate(split_text) if word_place == word] | |
| elif type(word_place) is int: | |
| word_place = [word_place] | |
| out = [] | |
| if len(word_place) > 0: | |
| words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1] | |
| cur_len, ptr = 0, 0 | |
| for i in range(len(words_encode)): | |
| cur_len += len(words_encode[i]) | |
| if ptr in word_place: | |
| out.append(i + 1) | |
| if cur_len >= len(split_text[ptr]): | |
| ptr += 1 | |
| cur_len = 0 | |
| return np.array(out) | |
| def update_alpha_time_word(alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int, word_inds: Optional[torch.Tensor]=None): | |
| if type(bounds) is float: | |
| bounds = 0, bounds | |
| start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0]) | |
| if word_inds is None: | |
| word_inds = torch.arange(alpha.shape[2]) | |
| alpha[: start, prompt_ind, word_inds] = 0 | |
| alpha[start: end, prompt_ind, word_inds] = 1 | |
| alpha[end:, prompt_ind, word_inds] = 0 | |
| return alpha | |
| def get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]], | |
| tokenizer, max_num_words=77): | |
| if type(cross_replace_steps) is not dict: | |
| cross_replace_steps = {"default_": cross_replace_steps} | |
| if "default_" not in cross_replace_steps: | |
| cross_replace_steps["default_"] = (0., 1.) | |
| alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words) | |
| for i in range(len(prompts) - 1): | |
| alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"], | |
| i) | |
| for key, item in cross_replace_steps.items(): | |
| if key != "default_": | |
| inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))] | |
| for i, ind in enumerate(inds): | |
| if len(ind) > 0: | |
| alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind) | |
| alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words) # time, batch, heads, pixels, words | |
| return alpha_time_words | |