Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| import time | |
| import librosa | |
| import numpy as np | |
| import soundfile | |
| import nemo.collections.asr as nemo_asr | |
| import tempfile | |
| import os | |
| import uuid | |
| SAMPLE_RATE = 16000 | |
| model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_en_conformer_transducer_xlarge") | |
| model.change_decoding_strategy(None) | |
| model.eval() | |
| # def process_audio_file(file): | |
| def process_audio_file(data, sr): | |
| # data, sr = librosa.load(file) | |
| if sr != SAMPLE_RATE: | |
| data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE) | |
| # monochannel | |
| data = librosa.to_mono(data) | |
| return data | |
| def transcribe(state, audio): | |
| # Grant additional context | |
| # time.sleep(1) | |
| sr, audio = audio | |
| audio = audio.astype(np.float32) | |
| audio /= np.max(np.abs(audio)) | |
| if state is None: | |
| state = "" | |
| # state = audio | |
| audio_data = process_audio_file(audio, sr) | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| # Filepath transcribe | |
| audio_path = os.path.join(tmpdir, f'audio_{uuid.uuid4()}.wav') | |
| soundfile.write(audio_path, audio_data, SAMPLE_RATE) | |
| transcriptions = model.transcribe([audio_path]) | |
| # Direct transcribe | |
| # transcriptions = model.transcribe([audio]) | |
| # if transcriptions form a tuple (from RNNT), extract just "best" hypothesis | |
| if type(transcriptions) == tuple and len(transcriptions) == 2: | |
| transcriptions = transcriptions[0] | |
| transcriptions = transcriptions[0] | |
| state = state + transcriptions + " " | |
| return state, state | |
| iface = gr.Interface( | |
| fn=transcribe, | |
| inputs=[ | |
| "state", | |
| gr.Audio(source="microphone", streaming=True), | |
| ], | |
| outputs=[ | |
| "state", | |
| "textbox", | |
| ], | |
| title="NeMo Streaming Conformer Transducer Large - English", | |
| description="Demo for English speech recognition using Conformer Transducers", | |
| live=True, | |
| ) | |
| # hack to prevent flickering of output | |
| # iface.dependencies[0]["show_progress"] = False | |
| # iface.dependencies[1]["show_progress"] = False | |
| # iface.dependencies[2]["show_progress"] = False | |
| iface.launch() | |