Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import numpy as np
|
| 3 |
+
from random import normalvariate, random
|
| 4 |
+
import plotly.express as px
|
| 5 |
+
|
| 6 |
+
from radcad import Model, Simulation, Experiment
|
| 7 |
+
import streamlit as st
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# Additional dependencies
|
| 11 |
+
|
| 12 |
+
# For analytics
|
| 13 |
+
import numpy as np
|
| 14 |
+
# For visualization
|
| 15 |
+
import plotly.express as px
|
| 16 |
+
pd.options.plotting.backend = "plotly"
|
| 17 |
+
|
| 18 |
+
st.header('DeSci Value Flow Model')
|
| 19 |
+
|
| 20 |
+
def p_researcher1(params, substep, state_history, previous_state):
|
| 21 |
+
losses = 0
|
| 22 |
+
to_market = 0
|
| 23 |
+
to_researcher = 0
|
| 24 |
+
to_treasury = 0
|
| 25 |
+
to_other_researcher = 0
|
| 26 |
+
salary = 0
|
| 27 |
+
funding = 0
|
| 28 |
+
if (previous_state['timestep'] < params['timestep_switch']) and (previous_state['funding_pool'] > params['funding_round']):
|
| 29 |
+
funding = params['funding_round']
|
| 30 |
+
to_treasury -= funding
|
| 31 |
+
research_value = funding * (1-params['epsilon'])
|
| 32 |
+
losses += funding - research_value
|
| 33 |
+
|
| 34 |
+
salary = research_value * params['beta']
|
| 35 |
+
to_market = research_value
|
| 36 |
+
if (random() < params['probability_buying']) and (previous_state['researcher1_value'] > params['cost_buying']):
|
| 37 |
+
salary = salary - params['cost_buying']
|
| 38 |
+
tx_fee = params['cost_buying'] * params['tx_fee']
|
| 39 |
+
salary -= tx_fee
|
| 40 |
+
to_treasury += tx_fee
|
| 41 |
+
to_other_researcher += params['cost_buying']
|
| 42 |
+
to_researcher += salary + research_value
|
| 43 |
+
elif (previous_state['timestep'] > params['timestep_switch']) and (previous_state['researcher1_value'] > params['cost_buying']):
|
| 44 |
+
tx_fee = params['cost_buying'] * params['tx_fee']
|
| 45 |
+
to_researcher -= params['cost_buying'] - tx_fee
|
| 46 |
+
to_other_researcher += params['cost_buying']
|
| 47 |
+
to_treasury += tx_fee
|
| 48 |
+
return {'update_researcher1_funding': funding,
|
| 49 |
+
'update_researcher1_salary': salary,
|
| 50 |
+
'update_researcher1_value': to_researcher,
|
| 51 |
+
'update_funding_pool': to_treasury,
|
| 52 |
+
'update_market': to_market,
|
| 53 |
+
'update_researcher2_value': to_other_researcher,
|
| 54 |
+
'update_losses': losses}
|
| 55 |
+
|
| 56 |
+
def p_researcher2(params, substep, state_history, previous_state):
|
| 57 |
+
losses = 0
|
| 58 |
+
to_market = 0
|
| 59 |
+
to_researcher = 0
|
| 60 |
+
to_treasury = 0
|
| 61 |
+
to_other_researcher = 0
|
| 62 |
+
salary = 0
|
| 63 |
+
funding = 0
|
| 64 |
+
if (previous_state['timestep'] > params['timestep_switch']) and (previous_state['funding_pool'] > params['funding_round']):
|
| 65 |
+
funding = params['funding_round']
|
| 66 |
+
to_treasury -= funding
|
| 67 |
+
research_value = funding * (1-params['epsilon'])
|
| 68 |
+
losses += funding - research_value
|
| 69 |
+
|
| 70 |
+
salary = research_value * params['beta']
|
| 71 |
+
to_market = research_value
|
| 72 |
+
if (random() < params['probability_buying']) and (previous_state['researcher2_value'] > params['cost_buying']):
|
| 73 |
+
salary = salary - params['cost_buying']
|
| 74 |
+
tx_fee = params['cost_buying'] * params['tx_fee']
|
| 75 |
+
salary -= tx_fee
|
| 76 |
+
to_treasury += tx_fee
|
| 77 |
+
to_other_researcher += params['cost_buying']
|
| 78 |
+
to_researcher += salary + research_value
|
| 79 |
+
elif (previous_state['timestep'] < params['timestep_switch']) and (previous_state['researcher2_value'] > params['cost_buying']):
|
| 80 |
+
tx_fee = params['cost_buying'] * params['tx_fee']
|
| 81 |
+
to_researcher -= params['cost_buying'] - tx_fee
|
| 82 |
+
to_other_researcher += params['cost_buying']
|
| 83 |
+
to_treasury += tx_fee
|
| 84 |
+
return {'update_researcher2_funding': funding,
|
| 85 |
+
'update_researcher2_salary': salary,
|
| 86 |
+
'update_researcher2_value': to_researcher,
|
| 87 |
+
'update_funding_pool': to_treasury,
|
| 88 |
+
'update_market': to_market,
|
| 89 |
+
'update_researcher1_value': to_other_researcher,
|
| 90 |
+
'update_losses': losses}
|
| 91 |
+
|
| 92 |
+
def s_timestep(params, substep, state_history, previous_state, policy_input):
|
| 93 |
+
updated_timestep = previous_state['timestep'] + 1
|
| 94 |
+
return 'timestep', updated_timestep
|
| 95 |
+
|
| 96 |
+
def s_funding_pool(params, substep, state_history, previous_state, policy_input):
|
| 97 |
+
funding_pool = previous_state['funding_pool']
|
| 98 |
+
updated_funding_pool = funding_pool + policy_input['update_funding_pool']
|
| 99 |
+
return 'funding_pool', updated_funding_pool
|
| 100 |
+
|
| 101 |
+
def s_researcher1_value(params, substep, state_history, previous_state, policy_input):
|
| 102 |
+
r_value = previous_state['researcher1_value']
|
| 103 |
+
updated_researcher1_value = r_value + policy_input['update_researcher1_value']
|
| 104 |
+
return 'researcher1_value', updated_researcher1_value
|
| 105 |
+
|
| 106 |
+
def s_researcher1_funding(params, substep, state_history, previous_state, policy_input):
|
| 107 |
+
r_funding = previous_state['researcher1_funding']
|
| 108 |
+
updated_researcher1_funding = r_funding + policy_input['update_researcher1_funding']
|
| 109 |
+
return 'researcher1_funding', updated_researcher1_funding
|
| 110 |
+
|
| 111 |
+
def s_researcher1_salary(params, substep, state_history, previous_state, policy_input):
|
| 112 |
+
r_salary = previous_state['researcher1_salary']
|
| 113 |
+
updated_researcher1_salary = r_salary + policy_input['update_researcher1_salary']
|
| 114 |
+
return 'researcher1_salary', updated_researcher1_salary
|
| 115 |
+
|
| 116 |
+
def s_researcher2_value(params, substep, state_history, previous_state, policy_input):
|
| 117 |
+
r_value = previous_state['researcher2_value']
|
| 118 |
+
updated_researcher2_value = r_value + policy_input['update_researcher2_value']
|
| 119 |
+
return 'researcher2_value', updated_researcher2_value
|
| 120 |
+
|
| 121 |
+
def s_researcher2_funding(params, substep, state_history, previous_state, policy_input):
|
| 122 |
+
r_funding = previous_state['researcher2_funding']
|
| 123 |
+
updated_researcher2_funding = r_funding + policy_input['update_researcher2_funding']
|
| 124 |
+
return 'researcher2_funding', updated_researcher2_funding
|
| 125 |
+
|
| 126 |
+
def s_researcher2_salary(params, substep, state_history, previous_state, policy_input):
|
| 127 |
+
r_salary = previous_state['researcher2_salary']
|
| 128 |
+
updated_researcher2_salary = r_salary + policy_input['update_researcher2_salary']
|
| 129 |
+
return 'researcher2_salary', updated_researcher2_salary
|
| 130 |
+
|
| 131 |
+
def s_knowledge_market(params, substep, state_history, previous_state, policy_input):
|
| 132 |
+
value = previous_state['knowledge_market_value']
|
| 133 |
+
updated_market_value = value + policy_input['update_market']
|
| 134 |
+
return 'knowledge_market_value', updated_market_value
|
| 135 |
+
|
| 136 |
+
def s_losses(params, substep, state_history, previous_state, policy_input):
|
| 137 |
+
losses = previous_state['losses']
|
| 138 |
+
updated_losses = losses + policy_input['update_losses']
|
| 139 |
+
return 'losses', updated_losses
|
| 140 |
+
|
| 141 |
+
st.subheader('Initial Value Allocation')
|
| 142 |
+
funding_pool = st.slider('Initial Funding Pool', min_value=1000, max_value=10000, value=1000, step=10)
|
| 143 |
+
researcher1_value = st.slider('Researcher1 Tokens', min_value=0, max_value=1000, value=0, step=1)
|
| 144 |
+
researcher2_value = st.slider('Researcher2 Tokens', min_value=0, max_value=1000, value=0, step=1)
|
| 145 |
+
st.subheader('Simulation Parameters')
|
| 146 |
+
tx_fee = st.slider('Transaction fee collected by DAO treasury during each transaction in the knowledge market', min_value=0., max_value=1., value=0.1, step=0.0001)
|
| 147 |
+
st.write('Set the funding disbursed each round from the funding pool')
|
| 148 |
+
funding_round = st.slider('Funding Round', min_value=100, max_value=1000, value=100, step=1)
|
| 149 |
+
st.write('Set the relative value leakages in the model.')
|
| 150 |
+
epsilon = st.slider('Work Inefficiency Weight', min_value=0., max_value=1., value=0.1, step=0.0001)
|
| 151 |
+
st.write('Set the portion of grant funding to be used as researcher salary.')
|
| 152 |
+
beta = st.slider('Salary Weight', min_value=0., max_value=1., value=0.4, step=0.0001)
|
| 153 |
+
st.write('Set the cost of getting access to papers in the knowledge market.')
|
| 154 |
+
cost_buying = st.slider('Cost of Buying', min_value=10., max_value=100., value=10., step=0.1)
|
| 155 |
+
st.write('Set the probability a researcher will buy access to a paper at each timestep.')
|
| 156 |
+
probability_buying = st.slider('Researcher Probability of Buying', min_value=0., max_value=1., value=0.1, step=0.0001)
|
| 157 |
+
st.write('Set the number of timesteps in the simulation.')
|
| 158 |
+
timesteps = st.slider('Timesteps', min_value=10, max_value=1000, value=100, step=1)
|
| 159 |
+
|
| 160 |
+
initial_state = {
|
| 161 |
+
'funding_pool': funding_pool,
|
| 162 |
+
'researcher1_value': researcher1_value,
|
| 163 |
+
'researcher1_funding': 0,
|
| 164 |
+
'researcher1_salary': 0,
|
| 165 |
+
'researcher2_value': researcher2_value,
|
| 166 |
+
'researcher2_funding': 0,
|
| 167 |
+
'researcher2_salary': 0,
|
| 168 |
+
'knowledge_market_value': 0,
|
| 169 |
+
'timestep': 0,
|
| 170 |
+
'losses': 0
|
| 171 |
+
}
|
| 172 |
+
ts = int(timesteps/2)
|
| 173 |
+
|
| 174 |
+
system_params = {
|
| 175 |
+
'funding_pool': [funding_pool],
|
| 176 |
+
'funding_round': [funding_round],
|
| 177 |
+
'beta': [beta],
|
| 178 |
+
'epsilon': [epsilon],
|
| 179 |
+
'cost_buying': [cost_buying],
|
| 180 |
+
'probability_buying': [probability_buying],
|
| 181 |
+
'timestep_switch': [ts],
|
| 182 |
+
'tx_fee': [tx_fee]
|
| 183 |
+
}
|
| 184 |
+
|
| 185 |
+
def configure_and_run_experiment(initial_state,
|
| 186 |
+
partial_state_update_blocks,
|
| 187 |
+
timesteps):
|
| 188 |
+
model = Model(
|
| 189 |
+
# Model initial state
|
| 190 |
+
initial_state=initial_state,
|
| 191 |
+
# Model Partial State Update Blocks
|
| 192 |
+
state_update_blocks=partial_state_update_blocks,
|
| 193 |
+
# System Parameters
|
| 194 |
+
params=system_params
|
| 195 |
+
)
|
| 196 |
+
simulation = Simulation(
|
| 197 |
+
model=model,
|
| 198 |
+
timesteps=timesteps, # Number of timesteps
|
| 199 |
+
runs=1 # Number of Monte Carlo Runs
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
result = simulation.run()
|
| 203 |
+
return result
|
| 204 |
+
|
| 205 |
+
partial_state_update_blocks = [
|
| 206 |
+
{
|
| 207 |
+
'policies': {
|
| 208 |
+
'p_researcher1': p_researcher1,
|
| 209 |
+
'p_researcher2': p_researcher2
|
| 210 |
+
},
|
| 211 |
+
'variables': {
|
| 212 |
+
'timestep': s_timestep,
|
| 213 |
+
'funding_pool': s_funding_pool,
|
| 214 |
+
'researcher1_value': s_researcher1_value,
|
| 215 |
+
'researcher1_funding': s_researcher1_funding,
|
| 216 |
+
'researcher1_salary': s_researcher1_salary,
|
| 217 |
+
'researcher2_value': s_researcher2_value,
|
| 218 |
+
'researcher2_funding': s_researcher2_funding,
|
| 219 |
+
'researcher2_salary': s_researcher2_salary,
|
| 220 |
+
'knowledge_market_value': s_knowledge_market,
|
| 221 |
+
'losses': s_losses
|
| 222 |
+
}
|
| 223 |
+
}
|
| 224 |
+
]
|
| 225 |
+
|
| 226 |
+
if st.button('Run Simulation'):
|
| 227 |
+
raw_result = configure_and_run_experiment(initial_state, partial_state_update_blocks, timesteps)
|
| 228 |
+
df = pd.DataFrame(raw_result)
|
| 229 |
+
fig1 = df.plot(kind='line', x='timestep', y=['funding_pool', 'researcher1_value', 'researcher2_value'], width=1000)
|
| 230 |
+
fig2 = df.plot(kind='line', x='timestep', y=['funding_pool','knowledge_market_value'], width=1000)
|
| 231 |
+
fig3 = df.plot(kind='line', x='timestep', y=['funding_pool', 'losses'], width=1000)
|
| 232 |
+
fig4 = df.plot(kind='line', x='timestep', y=['researcher1_value', 'researcher2_value', 'losses'], width=1000)
|
| 233 |
+
st.subheader('Results')
|
| 234 |
+
st.plotly_chart(fig1)
|
| 235 |
+
st.plotly_chart(fig2)
|
| 236 |
+
st.plotly_chart(fig3)
|
| 237 |
+
st.plotly_chart(fig4)
|