File size: 4,450 Bytes
3ceb7bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc518fa
 
 
 
 
 
 
 
 
 
3ceb7bf
 
 
 
 
 
 
 
 
 
 
 
 
 
f3a5ceb
3ceb7bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import getpass
from groq import Groq
from langchain.chat_models import init_chat_model
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_core.vectorstores import InMemoryVectorStore
from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import UnstructuredMarkdownLoader
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain import hub
from langgraph.graph import START, StateGraph
from pydantic.main import BaseModel
from typing_extensions import List, TypedDict

from langchain_cohere import CohereEmbeddings

import re
from dotenv import load_dotenv
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from fastapi.concurrency import run_in_threadpool
import nltk, os

# Force nltk to use your bundled data
nltk.data.path.append(os.path.join(os.path.dirname(__file__), "nltk_data"))

# Disable downloading at runtime (since Hugging Face is read-only)
def no_download(*args, **kwargs):
    return None

nltk.download = no_download

'''
if not os.environ.get("GROQ_API_KEY"):
    os.environ["GROQ_API_KEY"] = getpass.getpass("Enter API key for Groq: ")
'''

load_dotenv()

# avoid printing secret values
print("GROQ_API_KEY set:", bool(os.getenv("GROQ_API_KEY")))
print("HUGGING_FACE_API_KEY set:", bool(os.getenv("HUGGING_FACE_API_KEY")))
print("COHERE_API_KEY set:", bool(os.getenv("COHERE_API_KEY") or os.getenv("COHERE")))


llm = init_chat_model("moonshotai/kimi-k2-instruct-0905", model_provider="groq", api_key=os.getenv("GROQ_API_KEY"))
'''
embeddings = HuggingFaceInferenceAPIEmbeddings(
    api_key = os.getenv('HUGGING_FACE_API_KEY'),
    model_name="sentence-transformers/all-MiniLM-L6-v2"
)

embeddings = HuggingFaceInferenceAPIEmbeddings(
    api_key=os.getenv('HUGGING_FACE_API_KEY'), model_name="sentence-transformers/all-MiniLM-L6-v2"
)'''

embeddings = CohereEmbeddings(
    cohere_api_key=os.getenv("COHERE_API_KEY") or os.getenv("COHERE"),
    model="embed-english-v3.0",
    user_agent="langchain-cohere-embeddings"
)

vector_store = InMemoryVectorStore(embedding=embeddings)

md_loader = UnstructuredMarkdownLoader('comb.md')

text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
# all_splits = text_splitter.split_text(data_1 + "\n\n" + data_2 + "\n\n" + data_3 + "\n\n" + data_4)
# all_splits = text_splitter.split_text(comb)
all_splits = text_splitter.split_documents(md_loader.load())

# docs = [Document(page_content=text) for text in all_splits]
docs = [Document(page_content=text.page_content, metadata=text.metadata) for text in all_splits]
_ = vector_store.add_documents(documents=docs)


prompt = hub.pull("rlm/rag-prompt")

class State(TypedDict):
    question: str
    context: List[Document]
    answer: str

def retrieve(state: State):
    retrieved_docs = vector_store.similarity_search(state["question"])
    return {"context": retrieved_docs}

def generate(state: State):
    docs_content = "\n\n".join(doc.page_content for doc in state["context"])
    messages = prompt.invoke({"question": state["question"], "context": docs_content})
    response = llm.invoke(messages)
    return {"answer": response.content}

graph_builder = StateGraph(State).add_sequence([retrieve, generate])
graph_builder.add_edge(START, "retrieve")
graph = graph_builder.compile()
'''
response = graph.invoke({"question": "Who should i contact for help ?"})
print(response["answer"])
'''

app = FastAPI()

origins = ["*"]

app.add_middleware(
    CORSMiddleware,
    allow_origins=origins,
    allow_credentials=True,
    allow_methods=["GET", "POST", "PUT", "DELETE"],
    allow_headers=["*"],
)

@app.get("/ping")
async def ping():
    return "Pong!"

class Query(BaseModel):
    question: str

@app.post("/chat")
async def chat(request: Query):
    # run the blocking graph.invoke without blocking the event loop
    result = await run_in_threadpool(lambda: graph.invoke({"question": request.question}))
    answer = result.get("answer", "")
    answer = str(answer)
    answer = re.sub(r'<think>.*?</think>', '', answer, flags=re.DOTALL)
    return {"response": answer}

if __name__ == "__main__":
    import uvicorn
    print("Starting uvicorn server on http://127.0.0.1:8000")
    uvicorn.run("main:app", host="127.0.0.1", port=8000, log_level="info")