File size: 13,387 Bytes
0819f4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import numpy as np
import logging
from tqdm import tqdm
log = logging.getLogger(__name__)

class Board():
    '''
    Author: Eric P. Nichols
    Date: Feb 8, 2008.
    Board class.
    Board data:
    1=white, -1=black, 0=empty
    '''

    # list of all 8 directions on the board, as (x,y) offsets
    __directions = [(1,1),(1,0),(1,-1),(0,-1),(-1,-1),(-1,0),(-1,1),(0,1)]

    def __init__(self, n):
        "Set up initial board configuration."

        self.n = n
        # Create the empty board array.
        self.pieces = [None]*self.n
        for i in range(self.n):
            self.pieces[i] = [0]*self.n

        # Set up the initial 4 pieces.
        self.pieces[int(self.n/2)-1][int(self.n/2)] = 1
        self.pieces[int(self.n/2)][int(self.n/2)-1] = 1
        self.pieces[int(self.n/2)-1][int(self.n/2)-1] = -1;
        self.pieces[int(self.n/2)][int(self.n/2)] = -1;

    # add [][] indexer syntax to the Board
    def __getitem__(self, index): 
        return self.pieces[index]

    def countDiff(self, color):
        """Counts the # pieces of the given color
        (1 for white, -1 for black, 0 for empty spaces)"""
        count = 0
        for y in range(self.n):
            for x in range(self.n):
                if self[x][y]==color:
                    count += 1
                if self[x][y]==-color:
                    count -= 1
        return count

    def get_legal_moves(self, color):
        """Returns all the legal moves for the given color.
        (1 for white, -1 for black)
        """
        moves = set()  # stores the legal moves.

        # Get all the squares with pieces of the given color.
        for y in range(self.n):
            for x in range(self.n):
                if self[x][y]==color:
                    newmoves = self.get_moves_for_square((x,y))
                    moves.update(newmoves)
        return list(moves)

    def has_legal_moves(self, color):
        for y in range(self.n):
            for x in range(self.n):
                if self[x][y]==color:
                    newmoves = self.get_moves_for_square((x,y))
                    if len(newmoves)>0:
                        return True
        return False

    def get_moves_for_square(self, square):
        """Returns all the legal moves that use the given square as a base.
        That is, if the given square is (3,4) and it contains a black piece,
        and (3,5) and (3,6) contain white pieces, and (3,7) is empty, one
        of the returned moves is (3,7) because everything from there to (3,4)
        is flipped.
        """
        (x,y) = square

        # determine the color of the piece.
        color = self[x][y]

        # skip empty source squares.
        if color==0:
            return None

        # search all possible directions.
        moves = []
        for direction in self.__directions:
            move = self._discover_move(square, direction)
            if move:
                moves.append(move)

        # return the generated move list
        return moves

    def execute_move(self, move, color):
        """Perform the given move on the board; flips pieces as necessary.
        color gives the color of the piece to play (1=white,-1=black)
        """

        #Much like move generation, start at the new piece's square and
        #follow it on all 8 directions to look for a piece allowing flipping.

        flips = [flip for direction in self.__directions
                      for flip in self._get_flips(move, direction, color)]
        assert len(list(flips))>0
        for x, y in flips:
            self[x][y] = color

    def _discover_move(self, origin, direction):
        """ Returns the endpoint for a legal move, starting at the given origin,
        moving by the given increment."""
        x, y = origin
        color = self[x][y]
        flips = []

        for x, y in Board._increment_move(origin, direction, self.n):
            if self[x][y] == 0:
                if flips:
                    return (x, y)
                else:
                    return None
            elif self[x][y] == color:
                return None
            elif self[x][y] == -color:
                flips.append((x, y))

    def _get_flips(self, origin, direction, color):
        """ Gets the list of flips for a vertex and direction to use with the
        execute_move function """
        #initialize variables
        flips = [origin]

        for x, y in Board._increment_move(origin, direction, self.n):
            if self[x][y] == 0:
                return []
            if self[x][y] == -color:
                flips.append((x, y))
            elif self[x][y] == color and len(flips) > 0:
                return flips

        return []

    @staticmethod
    def _increment_move(move, direction, n):
        """ Generator expression for incrementing moves """
        move = list(map(sum, zip(move, direction)))
        #move = (move[0]+direction[0], move[1]+direction[1])
        while all(map(lambda x: 0 <= x < n, move)): 
        #while 0<=move[0] and move[0]<n and 0<=move[1] and move[1]<n:
            yield move
            move=list(map(sum,zip(move,direction)))
            #move = (move[0]+direction[0],move[1]+direction[1])


class OthelloGame():
    square_content = {
        -1: "X",
        +0: "-",
        +1: "O"
    }

    @staticmethod
    def getSquarePiece(piece):
        return OthelloGame.square_content[piece]

    def __init__(self, n):
        self.n = n

    def getInitBoard(self):
        # return initial board (numpy board)
        b = Board(self.n)
        return np.array(b.pieces)

    def getBoardSize(self):
        # (a,b) tuple
        return (self.n, self.n)

    def getActionSize(self):
        # return number of actions
        return self.n*self.n + 1

    def getNextState(self, board, player, action):
        # if player takes action on board, return next (board,player)
        # action must be a valid move
        if action == self.n*self.n:
            return (board, -player)
        b = Board(self.n)
        b.pieces = np.copy(board)
        move = (int(action/self.n), action%self.n)
        b.execute_move(move, player)
        return (b.pieces, -player)

    def getValidMoves(self, board, player):
        # return a fixed size binary vector
        valids = [0]*self.getActionSize()
        b = Board(self.n)
        b.pieces = np.copy(board)
        legalMoves =  b.get_legal_moves(player)
        if len(legalMoves)==0:
            valids[-1]=1
            return np.array(valids)
        for x, y in legalMoves:
            valids[self.n*x+y]=1
        return np.array(valids)

    def getGameEnded(self, board, player): 
        # return None if not ended, 1 if player won, -1 if player lost, 0 if draw.
        b = Board(self.n)
        b.pieces = np.copy(board)
        if b.has_legal_moves(player):
            return None
        if b.has_legal_moves(-player):
            return None
        if b.countDiff(player) > 0:
            return 1
        elif b.countDiff(player) < 0:
            return -1
        else:
            return 0

    def getCanonicalForm(self, board, player):
        # return state if player==1, else return -state if player==-1
        return player*board

    def getSymmetries(self, board, pi):
        # mirror, rotational
        assert(len(pi) == self.n**2+1)  # 1 for pass
        pi_board = np.reshape(pi[:-1], (self.n, self.n))
        l = []

        for i in range(1, 5):
            for j in [True, False]:
                newB = np.rot90(board, i)
                newPi = np.rot90(pi_board, i)
                if j:
                    newB = np.fliplr(newB)
                    newPi = np.fliplr(newPi)
                l += [(newB, list(newPi.ravel()) + [pi[-1]])]
        return l

    def stringRepresentation(self, board):
        return board.tostring()

    def stringRepresentationReadable(self, board):
        board_s = "".join(self.square_content[square] for row in board for square in row)
        return board_s

    def getScore(self, board, player):
        b = Board(self.n)
        b.pieces = np.copy(board)
        return b.countDiff(player)

    @staticmethod
    def display(board):
        n = board.shape[0]
        print("   ", end="")
        for y in range(n):
            print(y, end=" ")
        print("")
        print("-----------------------")
        for y in range(n):
            print(y, "|", end="")
            for x in range(n):
                piece = board[y][x]
                print(OthelloGame.square_content[piece], end=" ")
            print("|")

        print("-----------------------")


class RandomPlayer():
    def __init__(self, game):
        self.game = game

    def play(self, board):
        a = np.random.randint(self.game.getActionSize())
        valids = self.game.getValidMoves(board, 1)
        while valids[a]!=1:
            a = np.random.randint(self.game.getActionSize())
        return a

class GreedyOthelloPlayer():
    def __init__(self, game):
        self.game = game

    def play(self, board):
        valids = self.game.getValidMoves(board, 1)
        candidates = []
        for a in range(self.game.getActionSize()):
            if valids[a]==0:
                continue
            nextBoard, _ = self.game.getNextState(board, 1, a)
            score = self.game.getScore(nextBoard, 1)
            candidates += [(-score, a)]
        candidates.sort()
        return candidates[0][1]


class HumanOthelloPlayer():
    def __init__(self, game):
        self.game = game

    def play(self, board):
        # display(board)
        valid = self.game.getValidMoves(board, 1)
        for i in range(len(valid)):
            if valid[i]:
                print("[", int(i/self.game.n), int(i%self.game.n), end="] ")
        while True:
            input_move = input()
            input_a = input_move.split(" ")
            if len(input_a) == 2:
                try:
                    x,y = [int(i) for i in input_a]
                    if ((0 <= x) and (x < self.game.n) and (0 <= y) and (y < self.game.n)) or \
                            ((x == self.game.n) and (y == 0)):
                        a = self.game.n * x + y
                        if valid[a]:
                            break
                except ValueError:
                    'Invalid integer'
            print('Invalid move')
        return a


class Arena():
    """
    An Arena class where any 2 agents can be pit against each other.
    """

    def __init__(self, player1, player2, game, display=None):
        """
        Input:
            player 1,2: two functions that takes board as input, return action
            game: Game object
            display: a function that takes board as input and prints it. Is necessary for verbose
                     mode.
        """
        self.player1 = player1
        self.player2 = player2
        self.game = game
        self.display = display

    def playGame(self, verbose=False):
        """
        Executes one episode of a game.

        Returns:
            either
                winner: player who won the game (1 if player1, -1 if player2, 0 if draw)
        """
        players = [self.player2, None, self.player1]
        curPlayer = 1 # player1 go first
        board = self.game.getInitBoard()
        it = 0
        while self.game.getGameEnded(board, curPlayer) is None:
            it += 1
            if verbose:
                assert self.display
                print("Turn ", str(it), "Player ", str(curPlayer))
                self.display(board)
            action = players[curPlayer + 1](self.game.getCanonicalForm(board, curPlayer))

            valids = self.game.getValidMoves(self.game.getCanonicalForm(board, curPlayer), 1)

            if valids[action] == 0:
                log.error(f'Action {action} is not valid!')
                log.debug(f'valids = {valids}')
                assert valids[action] > 0
            board, curPlayer = self.game.getNextState(board, curPlayer, action)
        result = curPlayer * self.game.getGameEnded(board, curPlayer)
        if verbose:
            assert self.display
            print("Game over: Turn ", str(it), "Result ", str(result))
            self.display(board)
        return result

    def playGames(self, num, verbose=False):
        """
        Plays num games in which player1 starts num/2 games and player2 starts
        num/2 games.

        Returns:
            oneWon: games won by player1
            twoWon: games won by player2
            draws:  games won by nobody
        """

        num = int(num / 2)
        oneWon = 0
        twoWon = 0
        draws = 0
        for _ in tqdm(range(num), desc="Arena.playGames (player1 go first)"):
            gameResult = self.playGame(verbose=verbose)
            if gameResult == 1:
                oneWon += 1
            elif gameResult == -1:
                twoWon += 1
            else:
                draws += 1

        self.player1, self.player2 = self.player2, self.player1

        for _ in tqdm(range(num), desc="Arena.playGames (player2 go first)"):
            gameResult = self.playGame(verbose=verbose)
            if gameResult == -1:
                oneWon += 1
            elif gameResult == 1:
                twoWon += 1
            else:
                draws += 1

        return oneWon, twoWon, draws