Spaces:
Runtime error
Runtime error
| from huggingface_hub import from_pretrained_keras | |
| import gradio as gr | |
| from PIL import Image | |
| import tensorflow as tf | |
| import numpy as np | |
| import os | |
| # load model | |
| model = tf.keras.models.load_model('./tf_model.h5') # from keras-io/semantic-segmentation | |
| # gradio components | |
| inputs = gr.inputs.Image() | |
| outputs = gr.outputs.Image() | |
| # inference fn | |
| def predict(inputs): | |
| # convert img to numpy array, resize and normalize to make the prediction | |
| img = np.array(inputs) | |
| im = tf.image.resize(img, (128, 128)) | |
| im = tf.cast(im, tf.float32) / 255.0 | |
| pred_mask = model.predict(im[tf.newaxis, ...]) | |
| # take the best performing class for each pixel | |
| # the output of argmax looks like this [[1, 2, 0], ...] | |
| pred_mask_arg = tf.argmax(pred_mask, axis=-1) | |
| labels = [] | |
| # convert the prediction mask into binary masks for each class | |
| binary_masks = {} | |
| mask_codes = {} | |
| # when we take tf.argmax() over pred_mask, it becomes a tensor object | |
| # the shape becomes TensorShape object, looking like this TensorShape([128]) | |
| # we need to take get shape, convert to list and take the best one | |
| rows = pred_mask_arg[0][1].get_shape().as_list()[0] | |
| cols = pred_mask_arg[0][2].get_shape().as_list()[0] | |
| for cls in range(pred_mask.shape[-1]): | |
| binary_masks[f"mask_{cls}"] = np.zeros(shape = (pred_mask.shape[1], pred_mask.shape[2])) #create masks for each class | |
| for row in range(rows): | |
| for col in range(cols): | |
| if pred_mask_arg[0][row][col] == cls: | |
| binary_masks[f"mask_{cls}"][row][col] = 1 | |
| else: | |
| binary_masks[f"mask_{cls}"][row][col] = 0 | |
| mask = binary_masks[f"mask_{cls}"] | |
| mask *= 255 | |
| img = Image.fromarray(mask.astype(np.int8), mode="L") | |
| return img | |
| gr.Interface(predict, inputs = inputs, outputs = outputs).launch() |