Spaces:
Runtime error
Runtime error
sfmig
commited on
Commit
·
6c333c9
1
Parent(s):
912be9c
added a different color palette
Browse files- .gitignore +2 -0
- app.py +19 -162
.gitignore
CHANGED
|
@@ -1,3 +1,5 @@
|
|
| 1 |
scrap*
|
| 2 |
.DS_Store
|
| 3 |
requirements_conda.txt
|
|
|
|
|
|
|
|
|
| 1 |
scrap*
|
| 2 |
.DS_Store
|
| 3 |
requirements_conda.txt
|
| 4 |
+
app_0.py
|
| 5 |
+
test.py
|
app.py
CHANGED
|
@@ -12,6 +12,13 @@ https://arxiv.org/abs/2005.12872
|
|
| 12 |
Additions
|
| 13 |
- add shown labels as strings
|
| 14 |
- show only animal masks (ask an nlp model?)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
"""
|
| 16 |
|
| 17 |
from transformers import DetrFeatureExtractor, DetrForSegmentation
|
|
@@ -21,163 +28,8 @@ import numpy as np
|
|
| 21 |
import torch
|
| 22 |
import torchvision
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
def ade_palette():
|
| 27 |
-
"""ADE20K palette that maps each class to RGB values."""
|
| 28 |
-
return [
|
| 29 |
-
[120, 120, 120],
|
| 30 |
-
[180, 120, 120],
|
| 31 |
-
[6, 230, 230],
|
| 32 |
-
[80, 50, 50],
|
| 33 |
-
[4, 200, 3],
|
| 34 |
-
[120, 120, 80],
|
| 35 |
-
[140, 140, 140],
|
| 36 |
-
[204, 5, 255],
|
| 37 |
-
[230, 230, 230],
|
| 38 |
-
[4, 250, 7],
|
| 39 |
-
[224, 5, 255],
|
| 40 |
-
[235, 255, 7],
|
| 41 |
-
[150, 5, 61],
|
| 42 |
-
[120, 120, 70],
|
| 43 |
-
[8, 255, 51],
|
| 44 |
-
[255, 6, 82],
|
| 45 |
-
[143, 255, 140],
|
| 46 |
-
[204, 255, 4],
|
| 47 |
-
[255, 51, 7],
|
| 48 |
-
[204, 70, 3],
|
| 49 |
-
[0, 102, 200],
|
| 50 |
-
[61, 230, 250],
|
| 51 |
-
[255, 6, 51],
|
| 52 |
-
[11, 102, 255],
|
| 53 |
-
[255, 7, 71],
|
| 54 |
-
[255, 9, 224],
|
| 55 |
-
[9, 7, 230],
|
| 56 |
-
[220, 220, 220],
|
| 57 |
-
[255, 9, 92],
|
| 58 |
-
[112, 9, 255],
|
| 59 |
-
[8, 255, 214],
|
| 60 |
-
[7, 255, 224],
|
| 61 |
-
[255, 184, 6],
|
| 62 |
-
[10, 255, 71],
|
| 63 |
-
[255, 41, 10],
|
| 64 |
-
[7, 255, 255],
|
| 65 |
-
[224, 255, 8],
|
| 66 |
-
[102, 8, 255],
|
| 67 |
-
[255, 61, 6],
|
| 68 |
-
[255, 194, 7],
|
| 69 |
-
[255, 122, 8],
|
| 70 |
-
[0, 255, 20],
|
| 71 |
-
[255, 8, 41],
|
| 72 |
-
[255, 5, 153],
|
| 73 |
-
[6, 51, 255],
|
| 74 |
-
[235, 12, 255],
|
| 75 |
-
[160, 150, 20],
|
| 76 |
-
[0, 163, 255],
|
| 77 |
-
[140, 140, 140],
|
| 78 |
-
[250, 10, 15],
|
| 79 |
-
[20, 255, 0],
|
| 80 |
-
[31, 255, 0],
|
| 81 |
-
[255, 31, 0],
|
| 82 |
-
[255, 224, 0],
|
| 83 |
-
[153, 255, 0],
|
| 84 |
-
[0, 0, 255],
|
| 85 |
-
[255, 71, 0],
|
| 86 |
-
[0, 235, 255],
|
| 87 |
-
[0, 173, 255],
|
| 88 |
-
[31, 0, 255],
|
| 89 |
-
[11, 200, 200],
|
| 90 |
-
[255, 82, 0],
|
| 91 |
-
[0, 255, 245],
|
| 92 |
-
[0, 61, 255],
|
| 93 |
-
[0, 255, 112],
|
| 94 |
-
[0, 255, 133],
|
| 95 |
-
[255, 0, 0],
|
| 96 |
-
[255, 163, 0],
|
| 97 |
-
[255, 102, 0],
|
| 98 |
-
[194, 255, 0],
|
| 99 |
-
[0, 143, 255],
|
| 100 |
-
[51, 255, 0],
|
| 101 |
-
[0, 82, 255],
|
| 102 |
-
[0, 255, 41],
|
| 103 |
-
[0, 255, 173],
|
| 104 |
-
[10, 0, 255],
|
| 105 |
-
[173, 255, 0],
|
| 106 |
-
[0, 255, 153],
|
| 107 |
-
[255, 92, 0],
|
| 108 |
-
[255, 0, 255],
|
| 109 |
-
[255, 0, 245],
|
| 110 |
-
[255, 0, 102],
|
| 111 |
-
[255, 173, 0],
|
| 112 |
-
[255, 0, 20],
|
| 113 |
-
[255, 184, 184],
|
| 114 |
-
[0, 31, 255],
|
| 115 |
-
[0, 255, 61],
|
| 116 |
-
[0, 71, 255],
|
| 117 |
-
[255, 0, 204],
|
| 118 |
-
[0, 255, 194],
|
| 119 |
-
[0, 255, 82],
|
| 120 |
-
[0, 10, 255],
|
| 121 |
-
[0, 112, 255],
|
| 122 |
-
[51, 0, 255],
|
| 123 |
-
[0, 194, 255],
|
| 124 |
-
[0, 122, 255],
|
| 125 |
-
[0, 255, 163],
|
| 126 |
-
[255, 153, 0],
|
| 127 |
-
[0, 255, 10],
|
| 128 |
-
[255, 112, 0],
|
| 129 |
-
[143, 255, 0],
|
| 130 |
-
[82, 0, 255],
|
| 131 |
-
[163, 255, 0],
|
| 132 |
-
[255, 235, 0],
|
| 133 |
-
[8, 184, 170],
|
| 134 |
-
[133, 0, 255],
|
| 135 |
-
[0, 255, 92],
|
| 136 |
-
[184, 0, 255],
|
| 137 |
-
[255, 0, 31],
|
| 138 |
-
[0, 184, 255],
|
| 139 |
-
[0, 214, 255],
|
| 140 |
-
[255, 0, 112],
|
| 141 |
-
[92, 255, 0],
|
| 142 |
-
[0, 224, 255],
|
| 143 |
-
[112, 224, 255],
|
| 144 |
-
[70, 184, 160],
|
| 145 |
-
[163, 0, 255],
|
| 146 |
-
[153, 0, 255],
|
| 147 |
-
[71, 255, 0],
|
| 148 |
-
[255, 0, 163],
|
| 149 |
-
[255, 204, 0],
|
| 150 |
-
[255, 0, 143],
|
| 151 |
-
[0, 255, 235],
|
| 152 |
-
[133, 255, 0],
|
| 153 |
-
[255, 0, 235],
|
| 154 |
-
[245, 0, 255],
|
| 155 |
-
[255, 0, 122],
|
| 156 |
-
[255, 245, 0],
|
| 157 |
-
[10, 190, 212],
|
| 158 |
-
[214, 255, 0],
|
| 159 |
-
[0, 204, 255],
|
| 160 |
-
[20, 0, 255],
|
| 161 |
-
[255, 255, 0],
|
| 162 |
-
[0, 153, 255],
|
| 163 |
-
[0, 41, 255],
|
| 164 |
-
[0, 255, 204],
|
| 165 |
-
[41, 0, 255],
|
| 166 |
-
[41, 255, 0],
|
| 167 |
-
[173, 0, 255],
|
| 168 |
-
[0, 245, 255],
|
| 169 |
-
[71, 0, 255],
|
| 170 |
-
[122, 0, 255],
|
| 171 |
-
[0, 255, 184],
|
| 172 |
-
[0, 92, 255],
|
| 173 |
-
[184, 255, 0],
|
| 174 |
-
[0, 133, 255],
|
| 175 |
-
[255, 214, 0],
|
| 176 |
-
[25, 194, 194],
|
| 177 |
-
[102, 255, 0],
|
| 178 |
-
[92, 0, 255],
|
| 179 |
-
]
|
| 180 |
-
|
| 181 |
|
| 182 |
def predict_animal_mask(im,
|
| 183 |
gr_slider_confidence):
|
|
@@ -187,9 +39,9 @@ def predict_animal_mask(im,
|
|
| 187 |
# encoding is a dict with pixel_values and pixel_mask
|
| 188 |
encoding = feature_extractor(images=image, return_tensors="pt") #pt=Pytorch, tf=TensorFlow
|
| 189 |
outputs = model(**encoding) # odict with keys: ['logits', 'pred_boxes', 'pred_masks', 'last_hidden_state', 'encoder_last_hidden_state']
|
| 190 |
-
logits = outputs.logits # torch.Size([1, 100, 251]); why 251?
|
| 191 |
bboxes = outputs.pred_boxes
|
| 192 |
-
masks = outputs.pred_masks # torch.Size([1, 100, 200, 200]); for every pixel, score in each of the 100 classes? there is a mask per class
|
| 193 |
|
| 194 |
# keep only the masks with high confidence?--------------------------------
|
| 195 |
# compute the prob per mask (i.e., class), excluding the "no-object" class (the last one)
|
|
@@ -200,8 +52,13 @@ def predict_animal_mask(im,
|
|
| 200 |
# postprocess the mask (numpy arrays)
|
| 201 |
label_per_pixel = torch.argmax(masks[keep].squeeze(),dim=0).detach().numpy() # from the masks per class, select the highest per pixel
|
| 202 |
color_mask = np.zeros(image.size+(3,))
|
| 203 |
-
|
| 204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
# Show image + mask
|
| 207 |
pred_img = np.array(image.convert('RGB'))*0.5 + color_mask*0.5
|
|
@@ -227,7 +84,7 @@ gr.Interface(predict_animal_mask,
|
|
| 227 |
inputs = [gr_image_input,gr_slider_confidence],
|
| 228 |
outputs = gr_image_output,
|
| 229 |
title = 'Image segmentation with varying confidence',
|
| 230 |
-
description = "
|
| 231 |
|
| 232 |
|
| 233 |
####################################
|
|
|
|
| 12 |
Additions
|
| 13 |
- add shown labels as strings
|
| 14 |
- show only animal masks (ask an nlp model?)
|
| 15 |
+
|
| 16 |
+
For next time
|
| 17 |
+
- for diff 'confidence' the high conf masks should change....
|
| 18 |
+
- colors are not great and should be constant per class? add text?
|
| 19 |
+
- Im getting core dumped (segmentation fault) when loading hugging face model.. :()
|
| 20 |
+
https://github.com/huggingface/transformers/issues/16939
|
| 21 |
+
- cap slider to 95?
|
| 22 |
"""
|
| 23 |
|
| 24 |
from transformers import DetrFeatureExtractor, DetrForSegmentation
|
|
|
|
| 28 |
import torch
|
| 29 |
import torchvision
|
| 30 |
|
| 31 |
+
import itertools
|
| 32 |
+
import seaborn as sns
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
def predict_animal_mask(im,
|
| 35 |
gr_slider_confidence):
|
|
|
|
| 39 |
# encoding is a dict with pixel_values and pixel_mask
|
| 40 |
encoding = feature_extractor(images=image, return_tensors="pt") #pt=Pytorch, tf=TensorFlow
|
| 41 |
outputs = model(**encoding) # odict with keys: ['logits', 'pred_boxes', 'pred_masks', 'last_hidden_state', 'encoder_last_hidden_state']
|
| 42 |
+
logits = outputs.logits # torch.Size([1, 100, 251]); class logits? but why 251?
|
| 43 |
bboxes = outputs.pred_boxes
|
| 44 |
+
masks = outputs.pred_masks # torch.Size([1, 100, 200, 200]); mask logits? for every pixel, score in each of the 100 classes? there is a mask per class
|
| 45 |
|
| 46 |
# keep only the masks with high confidence?--------------------------------
|
| 47 |
# compute the prob per mask (i.e., class), excluding the "no-object" class (the last one)
|
|
|
|
| 52 |
# postprocess the mask (numpy arrays)
|
| 53 |
label_per_pixel = torch.argmax(masks[keep].squeeze(),dim=0).detach().numpy() # from the masks per class, select the highest per pixel
|
| 54 |
color_mask = np.zeros(image.size+(3,))
|
| 55 |
+
palette = itertools.cycle(sns.color_palette())
|
| 56 |
+
for lbl in np.unique(label_per_pixel): #enumerate(palette()):
|
| 57 |
+
color_mask[label_per_pixel==lbl,:] = np.asarray(next(palette))*255 #color
|
| 58 |
+
|
| 59 |
+
# color_mask = np.zeros(image.size+(3,))
|
| 60 |
+
# for lbl, color in enumerate(ade_palette()):
|
| 61 |
+
# color_mask[label_per_pixel==lbl,:] = color
|
| 62 |
|
| 63 |
# Show image + mask
|
| 64 |
pred_img = np.array(image.convert('RGB'))*0.5 + color_mask*0.5
|
|
|
|
| 84 |
inputs = [gr_image_input,gr_slider_confidence],
|
| 85 |
outputs = gr_image_output,
|
| 86 |
title = 'Image segmentation with varying confidence',
|
| 87 |
+
description = "A panoptic (semantic+instance) segmentation webapp using DETR (End-to-End Object Detection) model with ResNet-50 backbone").launch()
|
| 88 |
|
| 89 |
|
| 90 |
####################################
|