refactor clip_app_client into an api class and clip_app_performance_test
Browse files- experimental/clip_app_client.py +94 -140
- experimental/clip_app_performance_test.py +168 -0
experimental/clip_app_client.py
CHANGED
|
@@ -1,146 +1,100 @@
|
|
| 1 |
-
# File name: graph_client.py
|
| 2 |
-
from concurrent.futures import ThreadPoolExecutor
|
| 3 |
-
import json
|
| 4 |
import os
|
| 5 |
import numpy as np
|
| 6 |
import requests
|
| 7 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 8 |
-
import
|
| 9 |
-
|
| 10 |
import torch
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
)
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
# print (f"{n_result} : {len(result[0])}")
|
| 105 |
-
|
| 106 |
-
if __name__ == "__main__":
|
| 107 |
-
n_calls = 300
|
| 108 |
-
|
| 109 |
-
# test text
|
| 110 |
-
# n_calls = 1
|
| 111 |
-
numbers = list(range(n_calls))
|
| 112 |
-
start_time = time.monotonic()
|
| 113 |
-
process(numbers, _send_text_request)
|
| 114 |
-
end_time = time.monotonic()
|
| 115 |
-
total_time = end_time - start_time
|
| 116 |
-
avg_time_ms = total_time / n_calls * 1000
|
| 117 |
-
calls_per_sec = n_calls / total_time
|
| 118 |
-
print(f"Text...")
|
| 119 |
-
print(f" Average time taken: {avg_time_ms:.2f} ms")
|
| 120 |
-
print(f" Number of calls per second: {calls_per_sec:.2f}")
|
| 121 |
-
|
| 122 |
-
# test image url
|
| 123 |
-
# n_calls = 1
|
| 124 |
-
numbers = list(range(n_calls))
|
| 125 |
-
start_time = time.monotonic()
|
| 126 |
-
process(numbers, _send_image_url_request)
|
| 127 |
-
end_time = time.monotonic()
|
| 128 |
-
total_time = end_time - start_time
|
| 129 |
-
avg_time_ms = total_time / n_calls * 1000
|
| 130 |
-
calls_per_sec = n_calls / total_time
|
| 131 |
-
print(f"Image passing url...")
|
| 132 |
-
print(f" Average time taken: {avg_time_ms:.2f} ms")
|
| 133 |
-
print(f" Number of calls per second: {calls_per_sec:.2f}")
|
| 134 |
-
|
| 135 |
-
# test image as vector
|
| 136 |
-
# n_calls = 1
|
| 137 |
-
numbers = list(range(n_calls))
|
| 138 |
-
start_time = time.monotonic()
|
| 139 |
-
process(numbers, _send_preprocessed_image_request)
|
| 140 |
-
end_time = time.monotonic()
|
| 141 |
-
total_time = end_time - start_time
|
| 142 |
-
avg_time_ms = total_time / n_calls * 1000
|
| 143 |
-
calls_per_sec = n_calls / total_time
|
| 144 |
-
print(f"Preprocessed image...")
|
| 145 |
-
print(f" Average time taken: {avg_time_ms:.2f} ms")
|
| 146 |
-
print(f" Number of calls per second: {calls_per_sec:.2f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import numpy as np
|
| 3 |
import requests
|
| 4 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from io import BytesIO
|
| 7 |
import torch
|
| 8 |
|
| 9 |
+
from clip_retrieval.load_clip import load_clip, get_tokenizer
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class ClipAppClient:
|
| 13 |
+
"""
|
| 14 |
+
A class to handle generating embeddings using the OpenAI CLIP model.
|
| 15 |
+
|
| 16 |
+
clip_embeddings = ClipEmbeddings()
|
| 17 |
+
|
| 18 |
+
test_image_url = "https://example.com/image.jpg"
|
| 19 |
+
preprocessed_image = clip_embeddings.preprocess_image(test_image_url)
|
| 20 |
+
|
| 21 |
+
text = "A beautiful landscape"
|
| 22 |
+
text_embeddings = clip_embeddings.text_to_embedding(text)
|
| 23 |
+
|
| 24 |
+
image_embeddings = clip_embeddings.image_url_to_embedding(test_image_url)
|
| 25 |
+
|
| 26 |
+
preprocessed_image_embeddings = clip_embeddings.preprocessed_image_to_embedding(preprocessed_image)
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
def __init__(self, clip_model="ViT-L/14", device=None):
|
| 30 |
+
self.clip_model = clip_model
|
| 31 |
+
self.device = device or ("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 32 |
+
print("using device", self.device)
|
| 33 |
+
self.model, self.preprocess = load_clip(clip_model, use_jit=True, device=self.device)
|
| 34 |
+
self.tokenizer = get_tokenizer(clip_model)
|
| 35 |
+
|
| 36 |
+
def preprocess_image(self, image_url):
|
| 37 |
+
"""
|
| 38 |
+
Preprocess an image from a given URL.
|
| 39 |
+
|
| 40 |
+
:param image_url: str, URL of the image to preprocess
|
| 41 |
+
:return: torch.Tensor, preprocessed image
|
| 42 |
+
"""
|
| 43 |
+
response = requests.get(image_url)
|
| 44 |
+
input_image = Image.open(BytesIO(response.content)).convert('RGB')
|
| 45 |
+
input_image = np.array(input_image)
|
| 46 |
+
input_im = Image.fromarray(input_image)
|
| 47 |
+
prepro = self.preprocess(input_im).unsqueeze(0).cpu()
|
| 48 |
+
return prepro
|
| 49 |
+
|
| 50 |
+
def text_to_embedding(self, text):
|
| 51 |
+
"""
|
| 52 |
+
Convert a given text to an embedding using the OpenAI CLIP model.
|
| 53 |
+
|
| 54 |
+
:param text: str, text to convert to an embedding
|
| 55 |
+
:return: str, text embeddings
|
| 56 |
+
"""
|
| 57 |
+
payload = {
|
| 58 |
+
"text": ('str', text, 'application/octet-stream'),
|
| 59 |
+
}
|
| 60 |
+
url = os.environ.get("HTTP_ADDRESS", "http://127.0.0.1:8000/")
|
| 61 |
+
response = requests.post(url, files=payload)
|
| 62 |
+
embeddings = response.text
|
| 63 |
+
return embeddings
|
| 64 |
+
|
| 65 |
+
def image_url_to_embedding(self, image_url):
|
| 66 |
+
"""
|
| 67 |
+
Convert an image URL to an embedding using the OpenAI CLIP model.
|
| 68 |
+
|
| 69 |
+
:param image_url: str, URL of the image to convert to an embedding
|
| 70 |
+
:return: str, image embeddings
|
| 71 |
+
"""
|
| 72 |
+
payload = {
|
| 73 |
+
"image_url": ('str', image_url, 'application/octet-stream'),
|
| 74 |
+
}
|
| 75 |
+
url = os.environ.get("HTTP_ADDRESS", "http://127.0.0.1:8000/")
|
| 76 |
+
response = requests.post(url, files=payload)
|
| 77 |
+
embeddings = response.text
|
| 78 |
+
return embeddings
|
| 79 |
+
|
| 80 |
+
def preprocessed_image_to_embedding(self, image):
|
| 81 |
+
"""
|
| 82 |
+
Convert a preprocessed image to an embedding using the OpenAI CLIP model.
|
| 83 |
+
|
| 84 |
+
:param image: torch.Tensor, preprocessed image
|
| 85 |
+
:return: str, image embeddings
|
| 86 |
+
"""
|
| 87 |
+
key = "preprocessed_image"
|
| 88 |
+
data_bytes = image.numpy().tobytes()
|
| 89 |
+
shape_bytes = np.array(image.shape).tobytes()
|
| 90 |
+
dtype_bytes = str(image.dtype).encode()
|
| 91 |
+
payload = {
|
| 92 |
+
key: ('tensor', data_bytes, 'application/octet-stream'),
|
| 93 |
+
'shape': ('shape', shape_bytes, 'application/octet-stream'),
|
| 94 |
+
'dtype': ('dtype', dtype_bytes, 'application/octet-stream'),
|
| 95 |
+
}
|
| 96 |
+
url = os.environ.get("HTTP_ADDRESS", "http://127.0.0.1:8000/")
|
| 97 |
+
response = requests.post(url, files=payload)
|
| 98 |
+
embeddings = response.text
|
| 99 |
+
return embeddings
|
| 100 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
experimental/clip_app_performance_test.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 2 |
+
import json
|
| 3 |
+
import os
|
| 4 |
+
import time
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import requests
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
from clip_app_client import ClipAppClient
|
| 11 |
+
|
| 12 |
+
test_image_url = "https://static.wixstatic.com/media/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg/v1/fill/w_454,h_333,fp_0.50_0.50,q_90/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg"
|
| 13 |
+
english_text = (
|
| 14 |
+
"It was the best of times, it was the worst of times, it was the age "
|
| 15 |
+
"of wisdom, it was the age of foolishness, it was the epoch of belief"
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
app_client = ClipAppClient()
|
| 19 |
+
preprocessed_image = app_client.preprocess_image(test_image_url)
|
| 20 |
+
|
| 21 |
+
def _send_text_request(number):
|
| 22 |
+
embeddings = app_client.text_to_embedding(english_text)
|
| 23 |
+
return number, embeddings
|
| 24 |
+
|
| 25 |
+
def _send_image_url_request(number):
|
| 26 |
+
embeddings = app_client.image_url_to_embedding(test_image_url)
|
| 27 |
+
return number, embeddings
|
| 28 |
+
|
| 29 |
+
def _send_preprocessed_image_request(number):
|
| 30 |
+
embeddings = app_client.preprocessed_image_to_embedding(preprocessed_image)
|
| 31 |
+
return number, embeddings
|
| 32 |
+
|
| 33 |
+
def process(numbers, send_func, max_workers=10):
|
| 34 |
+
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 35 |
+
futures = [executor.submit(send_func, number) for number in numbers]
|
| 36 |
+
for future in as_completed(futures):
|
| 37 |
+
n_result, result = future.result()
|
| 38 |
+
result = json.loads(result)
|
| 39 |
+
print (f"{n_result} : {len(result[0])}")
|
| 40 |
+
|
| 41 |
+
if __name__ == "__main__":
|
| 42 |
+
n_calls = 300
|
| 43 |
+
|
| 44 |
+
# test text
|
| 45 |
+
numbers = list(range(n_calls))
|
| 46 |
+
start_time = time.monotonic()
|
| 47 |
+
process(numbers, _send_text_request)
|
| 48 |
+
end_time = time.monotonic()
|
| 49 |
+
total_time = end_time - start_time
|
| 50 |
+
avg_time_ms = total_time / n_calls * 1000
|
| 51 |
+
calls_per_sec = n_calls / total_time
|
| 52 |
+
print(f"Text...")
|
| 53 |
+
print(f" Average time taken: {avg_time_ms:.2f} ms")
|
| 54 |
+
print(f" Number of calls per second: {calls_per_sec:.2f}")
|
| 55 |
+
|
| 56 |
+
# test image url
|
| 57 |
+
numbers = list(range(n_calls))
|
| 58 |
+
start_time = time.monotonic()
|
| 59 |
+
process(numbers, _send_image_url_request)
|
| 60 |
+
end_time = time.monotonic()
|
| 61 |
+
total_time = end_time - start_time
|
| 62 |
+
avg_time_ms = total_time / n_calls * 1000
|
| 63 |
+
calls_per_sec = n_calls / total_time
|
| 64 |
+
print(f"Image passing url...")
|
| 65 |
+
print(f" Average time taken: {avg_time_ms:.2f} ms")
|
| 66 |
+
print(f" Number of calls per second: {calls_per_sec:.2f}")
|
| 67 |
+
|
| 68 |
+
# test image as vector
|
| 69 |
+
numbers = list(range(n_calls))
|
| 70 |
+
start_time = time.monotonic()
|
| 71 |
+
process(numbers, _send_preprocessed_image_request)
|
| 72 |
+
end_time = time.monotonic()
|
| 73 |
+
total_time = end_time - start_time
|
| 74 |
+
avg_time_ms = total_time / n_calls * 1000
|
| 75 |
+
calls_per_sec = n_calls / total_time
|
| 76 |
+
print(f"Preprocessed image...")
|
| 77 |
+
print(f" Average time taken: {avg_time_ms:.2f} ms")
|
| 78 |
+
print(f" Number of calls per second: {calls_per_sec:.2f}")
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
# from concurrent.futures import ThreadPoolExecutor
|
| 82 |
+
# import json
|
| 83 |
+
# import os
|
| 84 |
+
# import numpy as np
|
| 85 |
+
# import requests
|
| 86 |
+
# from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 87 |
+
# import time
|
| 88 |
+
|
| 89 |
+
# import torch
|
| 90 |
+
|
| 91 |
+
# # hack for debugging, set HTTP_ADDRESS to "http://127.0.0.1:8000/"
|
| 92 |
+
# # os.environ["HTTP_ADDRESS"] = "http://192.168.7.79:8000"
|
| 93 |
+
|
| 94 |
+
# test_image_url = "https://static.wixstatic.com/media/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg/v1/fill/w_454,h_333,fp_0.50_0.50,q_90/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg"
|
| 95 |
+
# english_text = (
|
| 96 |
+
# "It was the best of times, it was the worst of times, it was the age "
|
| 97 |
+
# "of wisdom, it was the age of foolishness, it was the epoch of belief"
|
| 98 |
+
# )
|
| 99 |
+
|
| 100 |
+
# preprocessed_image = preprocess_image(test_image_url)
|
| 101 |
+
|
| 102 |
+
# def _send_text_request(number):
|
| 103 |
+
# embeddings = text_to_embedding(english_text)
|
| 104 |
+
# return number, embeddings
|
| 105 |
+
|
| 106 |
+
# def _send_image_url_request(number):
|
| 107 |
+
# embeddings = image_url_to_embedding(test_image_url)
|
| 108 |
+
# return number, embeddings
|
| 109 |
+
|
| 110 |
+
# def _send_preprocessed_image_request(number):
|
| 111 |
+
# embeddings = preprocessed_image_to_embedding(preprocessed_image)
|
| 112 |
+
# return number, embeddings
|
| 113 |
+
|
| 114 |
+
# def process(numbers, send_func, max_workers=10):
|
| 115 |
+
# with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 116 |
+
# futures = [executor.submit(send_func, number) for number in numbers]
|
| 117 |
+
# for future in as_completed(futures):
|
| 118 |
+
# n_result, result = future.result()
|
| 119 |
+
# result = json.loads(result)
|
| 120 |
+
# print (f"{n_result} : {len(result[0])}")
|
| 121 |
+
|
| 122 |
+
# # def process_text(numbers, max_workers=10):
|
| 123 |
+
# # for n in numbers:
|
| 124 |
+
# # n_result, result = send_text_request(n)
|
| 125 |
+
# # result = json.loads(result)
|
| 126 |
+
# # print (f"{n_result} : {len(result[0])}")
|
| 127 |
+
|
| 128 |
+
# if __name__ == "__main__":
|
| 129 |
+
# n_calls = 300
|
| 130 |
+
|
| 131 |
+
# # test text
|
| 132 |
+
# # n_calls = 1
|
| 133 |
+
# numbers = list(range(n_calls))
|
| 134 |
+
# start_time = time.monotonic()
|
| 135 |
+
# process(numbers, _send_text_request)
|
| 136 |
+
# end_time = time.monotonic()
|
| 137 |
+
# total_time = end_time - start_time
|
| 138 |
+
# avg_time_ms = total_time / n_calls * 1000
|
| 139 |
+
# calls_per_sec = n_calls / total_time
|
| 140 |
+
# print(f"Text...")
|
| 141 |
+
# print(f" Average time taken: {avg_time_ms:.2f} ms")
|
| 142 |
+
# print(f" Number of calls per second: {calls_per_sec:.2f}")
|
| 143 |
+
|
| 144 |
+
# # test image url
|
| 145 |
+
# # n_calls = 1
|
| 146 |
+
# numbers = list(range(n_calls))
|
| 147 |
+
# start_time = time.monotonic()
|
| 148 |
+
# process(numbers, _send_image_url_request)
|
| 149 |
+
# end_time = time.monotonic()
|
| 150 |
+
# total_time = end_time - start_time
|
| 151 |
+
# avg_time_ms = total_time / n_calls * 1000
|
| 152 |
+
# calls_per_sec = n_calls / total_time
|
| 153 |
+
# print(f"Image passing url...")
|
| 154 |
+
# print(f" Average time taken: {avg_time_ms:.2f} ms")
|
| 155 |
+
# print(f" Number of calls per second: {calls_per_sec:.2f}")
|
| 156 |
+
|
| 157 |
+
# # test image as vector
|
| 158 |
+
# # n_calls = 1
|
| 159 |
+
# numbers = list(range(n_calls))
|
| 160 |
+
# start_time = time.monotonic()
|
| 161 |
+
# process(numbers, _send_preprocessed_image_request)
|
| 162 |
+
# end_time = time.monotonic()
|
| 163 |
+
# total_time = end_time - start_time
|
| 164 |
+
# avg_time_ms = total_time / n_calls * 1000
|
| 165 |
+
# calls_per_sec = n_calls / total_time
|
| 166 |
+
# print(f"Preprocessed image...")
|
| 167 |
+
# print(f" Average time taken: {avg_time_ms:.2f} ms")
|
| 168 |
+
# print(f" Number of calls per second: {calls_per_sec:.2f}")
|