Spaces:
Runtime error
Runtime error
| import pandas as pd | |
| import numpy as np | |
| import pickle | |
| import torch | |
| from torch.utils.data import Dataset, DataLoader | |
| from transformers import BertTokenizer, BertModel | |
| from transformers import AutoTokenizer, AutoModel | |
| import nltk | |
| tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
| model = BertModel.from_pretrained('bert-base-uncased', output_hidden_states = True,) | |
| def extract_context_words(x, window = 6): | |
| paragraph, offset_start, offset_end = x['paragraph'], x['offset_start'], x['offset_end'] | |
| target_word = paragraph[offset_start : offset_end] | |
| paragraph = ' ' + paragraph + ' ' | |
| offset_start = offset_start + 1 | |
| offset_end = offset_end + 1 | |
| prev_space_posn = (paragraph[:offset_start].rindex(' ') + 1) | |
| end_space_posn = (offset_end + paragraph[offset_end:].index(' ')) | |
| full_word = paragraph[prev_space_posn : end_space_posn] | |
| prev_words = nltk.word_tokenize(paragraph[0:prev_space_posn]) | |
| next_words = nltk.word_tokenize(paragraph[end_space_posn:]) | |
| words_in_context_window = prev_words[-1*window:] + [full_word] + next_words[:window] | |
| context_text = ' '.join(words_in_context_window) | |
| return context_text | |
| """The following functions have been created with inspiration from https://github.com/arushiprakash/MachineLearning/blob/main/BERT%20Word%20Embeddings.ipynb""" | |
| def bert_text_preparation(text, tokenizer): | |
| """Preparing the input for BERT | |
| Takes a string argument and performs | |
| pre-processing like adding special tokens, | |
| tokenization, tokens to ids, and tokens to | |
| segment ids. All tokens are mapped to seg- | |
| ment id = 1. | |
| Args: | |
| text (str): Text to be converted | |
| tokenizer (obj): Tokenizer object | |
| to convert text into BERT-re- | |
| adable tokens and ids | |
| Returns: | |
| list: List of BERT-readable tokens | |
| obj: Torch tensor with token ids | |
| obj: Torch tensor segment ids | |
| """ | |
| marked_text = "[CLS] " + text + " [SEP]" | |
| tokenized_text = tokenizer.tokenize(marked_text) | |
| indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text) | |
| segments_ids = [1]*len(indexed_tokens) | |
| # Convert inputs to PyTorch tensors | |
| tokens_tensor = torch.tensor([indexed_tokens]) | |
| segments_tensors = torch.tensor([segments_ids]) | |
| return tokenized_text, tokens_tensor, segments_tensors | |
| def get_bert_embeddings(tokens_tensor, segments_tensors, model): | |
| """Get embeddings from an embedding model | |
| Args: | |
| tokens_tensor (obj): Torch tensor size [n_tokens] | |
| with token ids for each token in text | |
| segments_tensors (obj): Torch tensor size [n_tokens] | |
| with segment ids for each token in text | |
| model (obj): Embedding model to generate embeddings | |
| from token and segment ids | |
| Returns: | |
| list: List of list of floats of size | |
| [n_tokens, n_embedding_dimensions] | |
| containing embeddings for each token | |
| """ | |
| # Gradient calculation id disabled | |
| # Model is in inference mode | |
| with torch.no_grad(): | |
| outputs = model(tokens_tensor, segments_tensors) | |
| # Removing the first hidden state | |
| # The first state is the input state | |
| hidden_states = outputs[2][1:] | |
| # Getting embeddings from the final BERT layer | |
| token_embeddings = hidden_states[-1] | |
| # Collapsing the tensor into 1-dimension | |
| token_embeddings = torch.squeeze(token_embeddings, dim=0) | |
| # Converting torchtensors to lists | |
| list_token_embeddings = [token_embed.tolist() for token_embed in token_embeddings] | |
| return list_token_embeddings | |
| def bert_embedding_extract(context_text, word): | |
| tokenized_text, tokens_tensor, segments_tensors = bert_text_preparation(context_text, tokenizer) | |
| list_token_embeddings = get_bert_embeddings(tokens_tensor, segments_tensors, model) | |
| word_tokens,tt,st = bert_text_preparation(word, tokenizer) | |
| word_embedding_all = [] | |
| for word_tk in word_tokens: | |
| word_index = tokenized_text.index(word_tk) | |
| word_embedding = list_token_embeddings[word_index] | |
| word_embedding_all.append(word_embedding) | |
| word_embedding_mean = np.array(word_embedding_all).mean(axis=0) | |
| return word_embedding_mean | |