import gradio as gr from huggingface_hub import InferenceClient import json from datetime import datetime def respond( message, history: list[dict[str, str]], system_message, max_tokens, temperature, top_p, hf_token: str, # 修改為直接接受 token 字串,適應 Spaces 環境 ): """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ try: client = InferenceClient(token=hf_token, model="meta-llama/Llama-2-7b-chat-hf") # 替換為公開模型 # 建議 1:限制對話歷史長度 max_history_length = 5 history = history[-max_history_length:] if len(history) > max_history_length else history # 建議 2:檢查語文相關關鍵詞,擴展清單以更容易觸發 writing_keywords = ["作文", "寫作", "文章", "閱讀", "詩詞", "擴展", "增長", "寫一篇", "故事", "描述"] is_writing_task = any(keyword in message.lower() for keyword in writing_keywords) if is_writing_task: system_message += "\n特別提示:用戶要求語文相關任務或長文字生成,請以山田優子的語文教師身份,提供文學化或教學建議,生成至少2000字的內容,適當引用詩詞或名言,保持溫柔且嚴格的語氣。" # 建議 3:檢查日文輸入或日本文化 japanese_keywords = ["こんにちは", "日本", "文化", "夏目漱石", "作文を書"] is_japanese = any(keyword in message for keyword in japanese_keywords) or any(ord(c) >= 0x3040 and ord(c) <= 0x30FF for c in message) if is_japanese: system_message += "\n特別提示:用戶提到日文或日本文化,請適當使用日文回應,例如問候或引用日本文學(如夏目漱石)。" # 長文字生成邏輯 responses = [] target_length = 2000 # 目標字數 current_length = 0 continuation_prompt = message if is_writing_task: while current_length < target_length: messages = [{"role": "system", "content": system_message}] messages.extend(history) messages.append({"role": "user", "content": continuation_prompt}) response = "" try: for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): choices = message.choices token = choices[0].delta.content if len(choices) and choices[0].delta.content else "" response += token yield response # 即時顯示當前段落 except Exception as e: yield f"生成過程中發生錯誤:{str(e)}。請稍後再試或檢查模型可用性。" return responses.append(response) current_length += len(response) history.append({"role": "user", "content": continuation_prompt}) history.append({"role": "assistant", "content": response}) # 更新 continuation_prompt 以繼續生成 continuation_prompt = f"請繼續擴展以下內容,保持語文教師山田優子的風格,目標總字數達{target_length}字:\n{response[-500:] if len(response) > 500 else response}" # 調整最後一次生成 if current_length >= target_length - max_tokens: max_tokens = max(target_length - current_length + 100, 50) if max_tokens < 50: break final_response = "\n\n".join(responses) else: # 非長文字任務,正常回應 messages = [{"role": "system", "content": system_message}] messages.extend(history) messages.append({"role": "user", "content": message}) final_response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): choices = message.choices token = choices[0].delta.content if len(choices) and choices[0].delta.content else "" final_response += token yield final_response history.append({"role": "user", "content": message}) history.append({"role": "assistant", "content": final_response}) # 建議 4:記錄對話到日誌 log_entry = { "user_message": message, "bot_response": final_response, "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S") } with open("chat_log.json", "a", encoding="utf-8") as f: json.dump(log_entry, f, ensure_ascii=False) f.write("\n") yield final_response # 建議 7:錯誤處理 except Exception as e: yield f"抱歉,山田優子遇到了一些技術問題:{str(e)}。請檢查你的 Hugging Face token 或稍後再試!" # 自訂聊天介面,支援長文字輸入和顯示 with gr.Blocks() as demo: with gr.Sidebar(): gr.Markdown("請輸入 Hugging Face API token 或登錄") hf_token = gr.Textbox(label="Hugging Face API Token", type="password") gr.Markdown("📢 想聽山田優子用溫柔的語氣教你語文?請下載 Grok iOS 或 Android 應用程式,開啟語音模式!") # 自訂輸入和輸出區域 input_text = gr.Textbox( placeholder="請輸入你的問題或短文(例如‘寫一篇關於秋天的文章’),山田優子將為你擴展至2000字以上!", lines=10, max_lines=50, label="輸入區" ) output_text = gr.Textbox(label="山田優子的回應", lines=20) system_message = gr.Textbox( value="你是一位名叫山田優子的語文教師,擁有黑色低馬尾髮型,身高175公分,體重60-70公斤。你溫柔但對學生要求嚴格,喜歡用文學化的語言表達,偶爾會引用詩詞或幽默的語句來化解尷尬。你的教學風格充滿同理心,鼓勵學生探索文字之美。如果用戶使用日文或提到日本文化,你會適當融入日文回應,例如問候或引用日本文學(如夏目漱石的句子)。", label="System message" ) max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") # 顯式提交按鈕 submit_button = gr.Button("提交") # 聊天歷史 history = gr.State([]) # 綁定按鈕事件 submit_button.click( fn=respond, inputs=[input_text, history, system_message, max_tokens, temperature, top_p, hf_token], outputs=[output_text, history], _js="() => {return []}" # 清空輸入框(可選) ) if __name__ == "__main__": demo.launch()