Spaces:
Sleeping
Sleeping
| import os | |
| import cv2 | |
| import shutil | |
| from PIL import Image | |
| import numpy as np | |
| import torch | |
| from torch.autograd import Variable | |
| from torchvision import transforms | |
| import torch.nn.functional as F | |
| from flask import Flask, request, jsonify, render_template, send_from_directory | |
| import warnings | |
| warnings.filterwarnings("ignore") | |
| app = Flask(__name__) | |
| # 一時ファイル保存用ディレクトリ | |
| UPLOAD_FOLDER = 'uploads' | |
| RESULT_FOLDER = 'results' | |
| EXAMPLES_FOLDER = 'examples' | |
| os.makedirs(UPLOAD_FOLDER, exist_ok=True) | |
| os.makedirs(RESULT_FOLDER, exist_ok=True) | |
| os.makedirs(EXAMPLES_FOLDER, exist_ok=True) | |
| # モデル関連のインポートと初期化 | |
| def initialize_model(): | |
| # Clean up previous installations | |
| if os.path.exists("DIS"): | |
| shutil.rmtree("DIS") | |
| if os.path.exists("saved_models"): | |
| shutil.rmtree("saved_models") | |
| # Clone repository and setup model | |
| os.system("git clone https://github.com/xuebinqin/DIS") | |
| os.system("mv DIS/IS-Net/* .") | |
| # Import after setup | |
| from data_loader_cache import normalize, im_reader, im_preprocess | |
| from models import ISNetDIS | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| # Setup model directories | |
| if not os.path.exists("saved_models"): | |
| os.mkdir("saved_models") | |
| os.system("mv isnet.pth saved_models/") | |
| # Set Parameters | |
| hypar = { | |
| "model_path": "./saved_models", | |
| "restore_model": "isnet.pth", | |
| "interm_sup": False, | |
| "model_digit": "full", | |
| "seed": 0, | |
| "cache_size": [1024, 1024], | |
| "input_size": [1024, 1024], | |
| "crop_size": [1024, 1024], | |
| "model": ISNetDIS() | |
| } | |
| # Build Model | |
| net = build_model(hypar, device) | |
| return net, hypar, device | |
| class GOSNormalize(object): | |
| def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]): | |
| self.mean = mean | |
| self.std = std | |
| def __call__(self, image): | |
| image = normalize(image, self.mean, self.std) | |
| return image | |
| transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])]) | |
| def load_image(im_path, hypar): | |
| im = im_reader(im_path) | |
| im, im_shp = im_preprocess(im, hypar["cache_size"]) | |
| im = torch.divide(im, 255.0) | |
| shape = torch.from_numpy(np.array(im_shp)) | |
| return transform(im).unsqueeze(0), shape.unsqueeze(0) | |
| def build_model(hypar, device): | |
| net = hypar["model"] | |
| if hypar["model_digit"] == "half": | |
| net.half() | |
| for layer in net.modules(): | |
| if isinstance(layer, nn.BatchNorm2d): | |
| layer.float() | |
| net.to(device) | |
| if hypar["restore_model"] != "": | |
| net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device)) | |
| net.to(device) | |
| net.eval() | |
| return net | |
| def predict(net, inputs_val, shapes_val, hypar, device): | |
| net.eval() | |
| if hypar["model_digit"] == "full": | |
| inputs_val = inputs_val.type(torch.FloatTensor) | |
| else: | |
| inputs_val = inputs_val.type(torch.HalfTensor) | |
| inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) | |
| ds_val = net(inputs_val_v)[0] | |
| pred_val = ds_val[0][0,:,:,:] | |
| pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear')) | |
| ma = torch.max(pred_val) | |
| mi = torch.min(pred_val) | |
| pred_val = (pred_val-mi)/(ma-mi) | |
| if device == 'cuda': torch.cuda.empty_cache() | |
| return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) | |
| def index(): | |
| return render_template('index.html') | |
| def serve_example(filename): | |
| # サンプル画像がなければダウンロード | |
| example_path = os.path.join(EXAMPLES_FOLDER, filename) | |
| if not os.path.exists(example_path): | |
| if filename == 'robot.png': | |
| os.system(f"wget https://raw.githubusercontent.com/xuebinqin/DIS/main/IS-Net/robot.png -O {example_path}") | |
| elif filename == 'ship.png': | |
| os.system(f"wget https://raw.githubusercontent.com/xuebinqin/DIS/main/IS-Net/ship.png -O {example_path}") | |
| return send_from_directory(EXAMPLES_FOLDER, filename) | |
| def process_image(): | |
| if 'image' not in request.files: | |
| return jsonify({"error": "No image provided"}), 400 | |
| file = request.files['image'] | |
| if file.filename == '': | |
| return jsonify({"error": "No selected file"}), 400 | |
| # 毎回モデルを初期化 | |
| net, hypar, device = initialize_model() | |
| # ファイルを保存 | |
| upload_path = os.path.join(UPLOAD_FOLDER, file.filename) | |
| file.save(upload_path) | |
| try: | |
| # 画像処理 | |
| image_tensor, orig_size = load_image(upload_path, hypar) | |
| mask = predict(net, image_tensor, orig_size, hypar, device) | |
| # 結果を保存 | |
| original_filename = os.path.splitext(file.filename)[0] | |
| result_rgba_path = os.path.join(RESULT_FOLDER, f"{original_filename}_rgba.png") | |
| result_mask_path = os.path.join(RESULT_FOLDER, f"{original_filename}_mask.png") | |
| pil_mask = Image.fromarray(mask).convert('L') | |
| im_rgb = Image.open(upload_path).convert("RGB") | |
| im_rgba = im_rgb.copy() | |
| im_rgba.putalpha(pil_mask) | |
| im_rgba.save(result_rgba_path) | |
| pil_mask.save(result_mask_path) | |
| # 結果のURLを返す | |
| return jsonify({ | |
| "original": f"/{UPLOAD_FOLDER}/{file.filename}", | |
| "rgba": f"/{RESULT_FOLDER}/{original_filename}_rgba.png", | |
| "mask": f"/{RESULT_FOLDER}/{original_filename}_mask.png", | |
| "filename": file.filename | |
| }) | |
| except Exception as e: | |
| return jsonify({"error": str(e)}), 500 | |
| def serve_upload(filename): | |
| return send_from_directory(UPLOAD_FOLDER, filename) | |
| def serve_result(filename): | |
| return send_from_directory(RESULT_FOLDER, filename) | |
| if __name__ == '__main__': | |
| app.run(host='0.0.0.0', port=7860, debug=True) |